Math, asked by Vinnaitsme777, 1 year ago

Integrate 1/2-3 cos 2x.

Answers

Answered by HHK
29
Hi Please find the attachment
Hope this helps.
Attachments:
Answered by hukam0685
16

Answer:

 \int \:  \frac{1}{2  -  3cos \: 2x} dx =\frac{1}{2 \sqrt{5} } log\bigg( \bigg| \frac{ \sqrt{5} \: tan \: x - 1 }{ \sqrt{5} \: tan \: x + 1 }\bigg | \bigg)  + c \\  \\

Step-by-step explanation:

To integrate

 \int \:  \frac{1}{2  -  3cos \: 2x} dx \\  \\ \int \:  \frac{1}{2  -  3(2 {cos}^{2} x - 1)} dx \\  \\ \int \:  \frac{1}{2  - 6 {cos}^{2} x  + 3} dx \\  \\ \int \:  \frac{1}{5  - 6 {cos}^{2} x } dx \\  \\

or

\int \:  \frac{ {sec}^{2}x }{5  {sec}^{2} x - 6} dx \\  \\ \int \:  \frac{ {sec}^{2}x }{5(1 +   { tan}^{2} x) - 6} dx   \\ \\ \int \:  \frac{ {sec}^{2}x }{5   { tan}^{2} x - 1} dx  \\  \\

let

tan \: x = t \\  \\  {sec}^{2}x dx = dt \\  \\

Substitute the value

 \int \frac{dt}{5 {t}^{2} - 1 }  \\  \\  = \frac{1}{5}  \int \frac{dt}{ {t}^{2} - \big( { \frac{1}{ \sqrt{5} } \big)}^{2}  }  \\ \\

We know that

 \boxed{ \int \frac{1}{ {x}^{2} -  {a}^{2}  } dx =  \frac{1}{2a}  log\bigg( \bigg| \frac{x - a}{x + a} \bigg| \bigg)  + c} \\  \\

 \frac{1}{5}  \int \frac{dt}{ {t}^{2} - ( { \frac{1}{ \sqrt{5} } )}^{2}  }  \\ \\   =  \frac{1}{5}  \frac{1}{2 \frac{1}{ \sqrt{5} } }  log\bigg( \bigg| \frac{t -  \frac{1}{ \sqrt{5} } }{t +  \frac{1}{ \sqrt{5} } } \bigg | \bigg)  + c \\  \\  =  \frac{ \sqrt{5} }{10}  log\bigg( \bigg| \frac{ \sqrt{5}t - 1 }{ \sqrt{5}t + 1 } \bigg | \bigg)  + c \\  \\  =  \frac{1}{2 \sqrt{5} } log\bigg( \bigg| \frac{ \sqrt{5} \: tan \: x - 1 }{ \sqrt{5} \: tan \: x + 1 }\bigg | \bigg)  + c \\  \\

Hope it helps you

Similar questions