Math, asked by anusain93, 11 months ago

inverse trigonometry ......solve this question​

Attachments:

Answers

Answered by Rohit18Bhadauria
0

Given:

x²+y²+z²=r²

To Prove:

\sf{tan^{-1}\dfrac{yz}{xr}+tan^{-1}\dfrac{zx}{yr}+tan^{-1}\dfrac{xy}{zr}=\dfrac{\pi}{2}}

Solution:

We know that,

\sf{tan^{-1}x+tan^{-1}y+tan^{-1}z=tan^{-1}\bigg(\dfrac{x+y+z-xyz}{1-(xy+yz+zx)}\bigg)}

\sf{tan^{-1}(\infty)=\dfrac{\pi}{2}}

It is given that,

x²+y²+z²=r²

\sf{\dfrac{x^{2}+y^{2}+z^{2}}{r^{2}}=1}-------(1)

Now,

\sf{L.H.S.=tan^{-1}\dfrac{yz}{xr}+tan^{-1}\dfrac{zx}{yr}+tan^{-1}\dfrac{xy}{zr}}

\sf{L.H.S.=tan^{-1}\Bigg(\dfrac{\dfrac{yz}{xr}+\dfrac{zx}{yr}+\dfrac{xy}{zr}-\Big(\dfrac{yz}{xr}.\dfrac{zx}{yr}.\dfrac{xy}{zr}\Big)}{1-\Big(\dfrac{yz}{xr}.\dfrac{zx}{yr}+\dfrac{zx}{yr}.\dfrac{xy}{zr}+\dfrac{xy}{zr}.\dfrac{yz}{xr}\Big)}\Bigg)}

\sf{L.H.S.=tan^{-1}\Bigg(\dfrac{\dfrac{yz}{xr}+\dfrac{zx}{yr}+\dfrac{xy}{zr}-\Big(\dfrac{xyz}{r^{3} }\Big)}{1-\Big(\dfrac{z^{2}}{r^{2}}+\dfrac{y^{2}}{r^{2}}+\dfrac{x^{2}}{r^{2}}\Big)}\Bigg)}

\sf{L.H.S.=tan^{-1}\Bigg(\dfrac{\dfrac{yz}{xr}+\dfrac{zx}{yr}+\dfrac{xy}{zr}-\Big(\dfrac{xyz}{r^{3} }\Big)}{1-\Big(\dfrac{x^{2}+y^{2}+z^{2}}{r^{2}}\Big)}\Bigg)}

From (1),

\sf{L.H.S.=tan^{-1}\Bigg(\dfrac{\dfrac{yz}{xr}+\dfrac{zx}{yr}+\dfrac{xy}{zr}-\Big(\dfrac{xyz}{r^{3} }\Big)}{1-(1)}\Bigg)}

\sf{L.H.S.=tan^{-1}\Bigg(\dfrac{\dfrac{yz}{xr}+\dfrac{zx}{yr}+\dfrac{xy}{zr}-\Big(\dfrac{xyz}{r^{3} }\Big)}{1-1}\Bigg)}

\sf{L.H.S.=tan^{-1}\Bigg(\dfrac{\dfrac{yz}{xr}+\dfrac{zx}{yr}+\dfrac{xy}{zr}-\Big(\dfrac{xyz}{r^{3} }\Big)}{0}\Bigg)}

We know that something upon 0 is '∞'.

Therefore,

\sf{L.H.S.=tan^{-1}(\infty)}

\sf{L.H.S.=\dfrac{\pi}{2} }

\sf{L.H.S.=R.H.S.}

Hence Proved

Similar questions