Math, asked by Rawala9680, 1 year ago

let a,b be natural numbers such that 2a-b , a-2b, a+b are all distinct squares. what is the smallest possible value of b

Answers

Answered by surender824
6
Least valueof b is 21
Attachments:
Answered by boffeemadrid
22

Answer:

Least value of b=21

Step-by-step explanation:

Let 2a-b=n^{2},                                                          (1)

a-2b=p^{2},                                                               (2)

a+b=k^{2},                                                                 (3)

Adding (2) and (3), we get

2a-b=p^{2}+k^{2}

From equation (1), we have  2a-b=n^{2}

therefore, p^{2}+k^{2}=n^{2} (p<k as a+b<a-2b)

For b to be the smallest,k^{2}  and p^{2} are also small and

must be multiple of 3 (as 3b=k^{2}-p^{2})

For smallest possible value of b, the least value of k and p be 12 and

9 respectively.

Therefore, the smallest possible value of b is 21.

Similar questions