Physics, asked by ishu192, 1 year ago

moment of inertia of cylendrical body

Answers

Answered by Joel873
0
The moment of inertia of a cylinder of mass M and radius R is
12MR2
The moment of inertia about a given axis is defined by the integral:

I=∫r2dm

where r is the distance from the axis of rotation and m the mass distibution. If we assume that the mass is distributed uniformly then we can define the costant mass density ρ as follows:

ρ=dmdV

where dV is the volume element.
We can therefore rewrite the integral as:

I=∫r2ρdV=ρ∫r2dV

It's convenient to write dV in cylindrical coordinates (r,θ,z):

dV=rdθdrdz

The integral thus becomes:

I=ρ∫h0dz∫2π0dθ∫R0r3

where h is the height of the cylinder. 
The result of the integral is:

I=2πρhR44=12πρhR4=12MR2

where we used M=ρV=ρ⋅(πR2h)
Similar questions