Math, asked by Anonymous, 9 months ago

Please answer the above question if u know the answer..

Please
⭐Explaination needed
⭐No spam
⭐No copied answers ​

Attachments:

Answers

Answered by shadowsabers03
7

Let,

\longrightarrow x\in[(A\cap B^c)^c\cup(B\cap C)]

Since x\in (A\cup B)\iff x\in A\lor x\in B,

\longrightarrow x\in[(A\cap B^c)^c]\ \lor\ x\in (B\cap C)

By DeMorgan's Law,

\longrightarrow x\in(A^c\cup B)\ \lor\ x\in (B\cap C)

\longrightarrow (x\in A^c\lor x\in B)\lor(x\in B\land x\in C)

By distribution law,

\longrightarrow (x\in A^c\lor x\in B\lor x\in B)\land(x\in A^c\lor x\in B\lor x\in C)

Since x\in A\lor x\in A\iff x\in (A\cup A)=A,

\longrightarrow (x\in A^c\lor x\in B)\land(x\in A^c\lor x\in B\lor x\in C)

\longrightarrow x\in[(A^c\cup B)\cap(A^c\cup B\cup C)]

Here (A^c\cup B)\subseteq(A^c\cup B\cup C). Then,

\longrightarrow\underline{\underline{x\in(A^c\cup B)}}

Hence (B) is the answer.

Similar questions