Math, asked by Pranaythescholar, 11 hours ago

Please someone solve this urgently...
(will mark the best answer as brainliest)

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :   value \: of \:  \\ (1 + tan \: x + sec \: x)(1 + cot \: x - cosec \: x) \\  \\  = (1 + tan \: x + sec \: x)(1 + cot \: x - cosec \: x) \\  \\  = (1 +  \frac{sin \: x}{cos \: x}  +  \frac{1}{cos \: x} )(1 +  \frac{cos \: x}{sin \: x }  -  \frac{1}{sin \: x} ) \\  \\  =  (1 +  \frac{1 + sin \: x}{cos \: x} )(1 +  \frac{cos \: x - 1}{sin \: x} ) \\  \\  = ( \frac{sin \: x + cos \: x + 1}{cos \: x} )( \frac{sin \: x + cos \: x - 1}{sin \: x} ) \\  \\  = ( \frac{a + b + c}{b} )( \frac{a + b - c}{a} ) \\  \\  =  \frac{a {}^{2} + b {}^{2}   - c {}^{2}  + 2ab}{ab}  \\  \\  =  \frac{sin {}^{2}  \: x + cos {}^{2}  \: x - 1 + 2.sin \: x.cos \: x}{sin \: x.cos \: x}  \\  \\  =  \frac{1 - 1 + 2.sin \: x.cos \: x}{sin \: x.cos \: x}  \\  \\  =  \frac{2.sin \: x.cos \: x}{sin \: x.cos \: x}  \\  \\  = 2

Similar questions