Math, asked by vtharmikkha, 5 months ago

pls answer the question. will mark brainliest​

Attachments:

Answers

Answered by PharohX
3

Answer:

 \green{ \longrightarrow\sf \: \large GIVEN \longleftarrow}

 \displaystyle \:  \sf \:  \frac{ \sqrt{ {x}^{3} }. \sqrt[3]{ {x}^{5} }  }{ \sqrt[5]{ {x}^{3} } } . \sqrt[30]{ {x}^{77} }

 \green{ \longrightarrow\sf \:  \large TO \:  FIND \longleftarrow}

 \sf \: </p><p>What  \: should  \: be  \: multiply \:  to \:  get  \: 1</p><p>

 \green{ \longrightarrow\sf \large SOLUTION \longleftarrow}

 \sf \:  First  \: simply  \: this  \: expression

 \displaystyle \:  \sf \:  \frac{ \sqrt{ {x}^{3} }. \sqrt[3]{ {x}^{5} }  }{ \sqrt[5]{ {x}^{3} } } . \sqrt[30]{ {x}^{77} }  \\  \\ =   \large \sf \frac{ {x}^{ (\frac{3}{2})} . {x}^{ \frac{5}{3} } }{ {x}^{ \frac{3}{5} } } . {x}^{ \frac{77}{30} }  \\  \\  = \sf \:   \large{x}^{ (\frac{3}{2} +  \frac{5}{3}   +  \frac{77}{30}  -  \frac{3}{5} )}  \\  \\  =  \sf \:  \large {x}^{ (\frac{45 + 50 + 77 - 18}{30}) }  \\  \\  =  \sf \large {x}^{( \frac{154}{30}) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \sf \large \:  =  {x}^{ \frac{77}{15} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  =  \sf \large \sqrt[15]{ {x}^{77} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: This  \: is  \: the  \: simplified  \: term  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \: let \: z \: be \: multiplied \: so \:  \: we \: get \:  \: product \: 1

 \sf \:  \large \:  \{ \sqrt[15]{ {x}^{77} }  \}.z \:  = 1 \\   \\   \implies \sf \: \green{ \boxed{  \sf \: z =  \frac{1}{ \sqrt[15]{ {x}^{77} } } }}

So option C is correct.

Similar questions