plz find the answer as soon as possible
Answers
To find--->
-------------
dy x
∫ ------ = ∫ ----------------- dx
y √(x² - 4 )
Solution--->
---------------
1 x
=> ∫ ------- dy = ∫ -------------- dx + c
y √(x² - 4 )
x
=> log y = ∫ --------------- dx +c
√(x² - 4)
Let x² - 4 = t
Differentiating with respect to x
( 2x - 0 )dx = dt
x dx = dt/2
1
=> log y = ∫ --------------- (dt/2) + c
√t
= 1/2 ∫ t⁻¹/² dt + c
We have a formula
xⁿ⁺¹
∫ xⁿ dx = ----------- + c applying it here
n + 1
t⁻¹/² ⁺ ¹
= 1/2 ( ----------- ) + c
-1/2 +1
t¹/²
= 1/2 ( -----------) + c
1/2
= t¹/² + c
Putting value of t
=> log y = √ (x² - 4 ) + c
Additional information--->
-------------------------------------
1) ∫ 1/x dx= logx + c
2) ∫eˣ dx = eˣ + c
3) ∫ aˣ dx = aˣ / loga + c
4) ∫ Sinx dx = - Cosx + c
5) ∫ Cosx dx = Sinx + c
6) ∫ Sec²x dx = tanx + c
7) ∫ Secx tanx dx = Secx + c
8) ∫ Cose²x dx = - Cotx + c
9) ∫ Cosecx Cotx dx = - Cosecx + c