Math, asked by didiiisi, 5 months ago

plz help........... ....​

Attachments:

Answers

Answered by BrainlyEmpire
53

\sf Given \begin{cases} & \sf{Radius\;of\;cap,\; = \bf{7\;cm}} \\ & \sf{Height\;of\;cap,\; = \bf{24\;cm}}  \end{cases}\\ \\

Need to find: Area of sheet to make 10 caps?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let's consider slant height of cone be 'l'.

⠀⠀

\setlength{\unitlength}{1.7mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{7 cm}}\put(9.5,10){\sf{24 cm}}\end{picture}

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{(Slant\; height)^2 = (Height)^2 + (Radius)^2}}}}\\ \\

:\implies\sf l^2 = h^2 + r^2\\ \\ :\implies\sf l^2 = (24)^2 + (7)^2\\ \\ :\implies\sf l^2 = 576 + 49 \\ \\ :\implies\sf l^2 = 625\\ \\ :\implies\sf \sqrt{l^2} = \sqrt{625}\\ \\ :\implies{\underline{\boxed{\frak{\purple{l = 25\;cm}}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Sheet required will be on the curved surface

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{CSA_{\;(cone)} = \pi rl}}}}\\ \\

CSA of 1 joker's cap,

⠀⠀

:\implies\sf CSA_{\;(1\;cap)} = \dfrac{22}{ \cancel{7}} \times \cancel{7} \times 25\\ \\ :\implies\sf CSA_{\;(1\;cap)} = 22 \times 25\\ \\ :\implies{\underline{\boxed{\frak{\purple{CSA_{\;(1\;cap)} = 550\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Curved\;surface\;area\;of\;1\;cap\;is\; \bf{550\;cm^2}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

CSA of 10 joker's cap,

⠀⠀

:\implies\sf CSA_{\;(10\;cap)} = 10 \times CSA_{\;(1\;cap)}\\ \\ :\implies\sf CSA_{\;(10\;cap)} = 10 \times 550\\ \\ :\implies{\underline{\boxed{\frak{\purple{CSA_{\;(10\;cap)} = 5500\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Curved\;surface\;area\;of\;10\;cap\;is\; \bf{5500\;cm^2}.}}}

Answered by Anonymous
58

Answer:

\sf Given \begin{cases} & \sf{Radius\;of\;cap,\; = \bf{7\;cm}} \\ & \sf{Height\;of\;cap,\; = \bf{24\;cm}}  \end{cases}\\ \\

Need to find: Area of sheet to make 10 caps?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let's consider slant height of cone be 'l'.

⠀⠀

\setlength{\unitlength}{1.7mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{7 cm}}\put(9.5,10){\sf{24 cm}}\end{picture}

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{(Slant\; height)^2 = (Height)^2 + (Radius)^2}}}}\\ \\

:\implies\sf l^2 = h^2 + r^2\\ \\ :\implies\sf l^2 = (24)^2 + (7)^2\\ \\ :\implies\sf l^2 = 576 + 49 \\ \\ :\implies\sf l^2 = 625\\ \\ :\implies\sf \sqrt{l^2} = \sqrt{625}\\ \\ :\implies{\underline{\boxed{\frak{\purple{l = 25\;cm}}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Sheet required will be on the curved surface

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{CSA_{\;(cone)} = \pi rl}}}}\\ \\

CSA of 1 joker's cap,

⠀⠀

:\implies\sf CSA_{\;(1\;cap)} = \dfrac{22}{ \cancel{7}} \times \cancel{7} \times 25\\ \\ :\implies\sf CSA_{\;(1\;cap)} = 22 \times 25\\ \\ :\implies{\underline{\boxed{\frak{\purple{CSA_{\;(1\;cap)} = 550\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Curved\;surface\;area\;of\;1\;cap\;is\; \bf{550\;cm^2}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

CSA of 10 joker's cap,

⠀⠀

:\implies\sf CSA_{\;(10\;cap)} = 10 \times CSA_{\;(1\;cap)}\\ \\ :\implies\sf CSA_{\;(10\;cap)} = 10 \times 550\\ \\ :\implies{\underline{\boxed{\frak{\purple{CSA_{\;(10\;cap)} = 5500\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Curved\;surface\;area\;of\;10\;cap\;is\; \bf{5500\;cm^2}.}}}

Answered by Anonymous
69

Answer:

\sf Given \begin{cases} & \sf{Radius\;of\;cap,\; = \bf{7\;cm}} \\ & \sf{Height\;of\;cap,\; = \bf{24\;cm}}  \end{cases}\\ \\

Need to find: Area of sheet to make 10 caps?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let's consider slant height of cone be 'l'.

⠀⠀

\setlength{\unitlength}{1.7mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{7 cm}}\put(9.5,10){\sf{24 cm}}\end{picture}

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{(Slant\; height)^2 = (Height)^2 + (Radius)^2}}}}\\ \\

:\implies\sf l^2 = h^2 + r^2\\ \\ :\implies\sf l^2 = (24)^2 + (7)^2\\ \\ :\implies\sf l^2 = 576 + 49 \\ \\ :\implies\sf l^2 = 625\\ \\ :\implies\sf \sqrt{l^2} = \sqrt{625}\\ \\ :\implies{\underline{\boxed{\frak{\purple{l = 25\;cm}}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Sheet required will be on the curved surface

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{CSA_{\;(cone)} = \pi rl}}}}\\ \\

CSA of 1 joker's cap,

⠀⠀

:\implies\sf CSA_{\;(1\;cap)} = \dfrac{22}{ \cancel{7}} \times \cancel{7} \times 25\\ \\ :\implies\sf CSA_{\;(1\;cap)} = 22 \times 25\\ \\ :\implies{\underline{\boxed{\frak{\purple{CSA_{\;(1\;cap)} = 550\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Curved\;surface\;area\;of\;1\;cap\;is\; \bf{550\;cm^2}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

CSA of 10 joker's cap,

⠀⠀

:\implies\sf CSA_{\;(10\;cap)} = 10 \times CSA_{\;(1\;cap)}\\ \\ :\implies\sf CSA_{\;(10\;cap)} = 10 \times 550\\ \\ :\implies{\underline{\boxed{\frak{\purple{CSA_{\;(10\;cap)} = 5500\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Curved\;surface\;area\;of\;10\;cap\;is\; \bf{5500\;cm^2}.}}}

Answered by Anonymous
82

Answer:

\sf Given \begin{cases} & \sf{Radius\;of\;cap,\; = \bf{7\;cm}} \\ & \sf{Height\;of\;cap,\; = \bf{24\;cm}}  \end{cases}\\ \\

Need to find: Area of sheet to make 10 caps?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let's consider slant height of cone be 'l'.

⠀⠀

\setlength{\unitlength}{1.7mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{7 cm}}\put(9.5,10){\sf{24 cm}}\end{picture}

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{(Slant\; height)^2 = (Height)^2 + (Radius)^2}}}}\\ \\

:\implies\sf l^2 = h^2 + r^2\\ \\ :\implies\sf l^2 = (24)^2 + (7)^2\\ \\ :\implies\sf l^2 = 576 + 49 \\ \\ :\implies\sf l^2 = 625\\ \\ :\implies\sf \sqrt{l^2} = \sqrt{625}\\ \\ :\implies{\underline{\boxed{\frak{\purple{l = 25\;cm}}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Sheet required will be on the curved surface

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{CSA_{\;(cone)} = \pi rl}}}}\\ \\

CSA of 1 joker's cap,

⠀⠀

:\implies\sf CSA_{\;(1\;cap)} = \dfrac{22}{ \cancel{7}} \times \cancel{7} \times 25\\ \\ :\implies\sf CSA_{\;(1\;cap)} = 22 \times 25\\ \\ :\implies{\underline{\boxed{\frak{\purple{CSA_{\;(1\;cap)} = 550\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Curved\;surface\;area\;of\;1\;cap\;is\; \bf{550\;cm^2}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

CSA of 10 joker's cap,

⠀⠀

:\implies\sf CSA_{\;(10\;cap)} = 10 \times CSA_{\;(1\;cap)}\\ \\ :\implies\sf CSA_{\;(10\;cap)} = 10 \times 550\\ \\ :\implies{\underline{\boxed{\frak{\purple{CSA_{\;(10\;cap)} = 5500\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Curved\;surface\;area\;of\;10\;cap\;is\; \bf{5500\;cm^2}.}}}

Similar questions