Math, asked by shivamsingh77333, 1 year ago

Plz solve............................

Attachments:

Answers

Answered by Mankuthemonkey01
4

a = 2 +  \sqrt{3}  \\  \\  =  >  \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }

rationalising,

 \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{(2 +  \sqrt{3)(2 -  \sqrt{3)} } }  \\  \\  =  >  \frac{2 -  \sqrt{3} }{ {2}^{2} - ( \sqrt{3) {}^{2} }  }  \\  \\  =  >  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  =  >  \frac{2 -  \sqrt{3} }{1}  \\  =  >  \frac{1}{a}  = 2 -  \sqrt{3}


So,

1) a + 1/a

= 2 + √3 + 2 - √3

= 4


Answer :- 4


2) a² + 1/a²

=> (2 + √3)² + (2 - √3)²

= 4 + 3 + 4√3 + 4 + 3 - 4√3

= 14

Answer :- 14


3) a - 1/a

= 2 + √3 - (2 - √3)

= 2 + √3 - 2 + √3

= √3 + √3

= 2√3

4) √a - 1/√a

= √(2 + √3) - √(2 - √3)



Now, To find √(2 + √3)

=> Multiply 2 on both numerator and denominator

 \sqrt{2 +  \sqrt{3} \times  \frac{2}{2}  }  \\  \\  =  >  \sqrt{ \frac{4 + 2 \sqrt{3} }{2} }  \\  \\  =  >  \sqrt{ \frac{( \sqrt{3) {}^{2} } + 1 {}^{2} + 2( \sqrt{3)1}   }{2} }  \\  \\  =  >    \sqrt{ \frac{( \sqrt{3} + 1) {}^{2}  }{2} }  \\  \\  =  >   \frac{ \sqrt{3} +  1 }{ \sqrt{2} }  \\  \\  =  >  \frac{( \sqrt{3}  + 1)( \sqrt{2)} }{ \sqrt{2}  \times  \sqrt{2} }  \\  \\  =  >  \frac{ \sqrt{6 } +  \sqrt{2}  }{2}


Similarly √(2 - √3) =
 \frac{ \sqrt{6}  -  \sqrt{2} }{2}  \\



Hence, √a - 1/√a

=
 \frac{ \sqrt{6} +  \sqrt{2}  }{2}  - (  \frac{ \sqrt{6}  -  \sqrt{2} }{2} )

 =  >  \frac{ \sqrt{6} +  \sqrt{2}  -  \sqrt{6}   +  \sqrt{2} }{2}  \\  \\  =  >  \frac{2 \sqrt{2} }{2}  \\  \\  =  \sqrt{2}


Answer :- √2

shivamsingh77333: thank you so much.
Similar questions