Math, asked by aman7863, 1 year ago

Plz solve question no 12

Attachments:

Answers

Answered by OmGupta11
1

 \frac{( { \sin }^{4} \theta +{\cos }^{4} \theta)   }{1 -  2{ \sin}^{2} \theta  { \cos}^{2}  \theta}  = 1\\  { \sin}^{2}  \theta \:  +  { \cos }^{2}  \theta = 1(identity)
Squaring both sides,
( {{ \sin}^{2}  \theta \:  +  { \cos }^{2}  \theta})^{2}  =  {1}^{2}  \\  { \sin}^{4}  \theta +  { \cos }^{4}  \theta + 2 { \sin}^{2}  \theta { \cos}^{2}  \theta = 1 \\ { \sin}^{4}  \theta +  { \cos }^{4}  \theta = 1 -  2 { \sin}^{2}  \theta { \cos}^{2}  \theta \\ { \sin}^{4}  \theta +  { \cos }^{4}  \theta = (1 -  2 { \sin}^{2}  \theta { \cos}^{2}  \theta) \times 1 \\    \frac{({ \sin}^{4}  \theta +  { \cos }^{4}  \theta)}{1 -  2 { \sin}^{2}  \theta { \cos}^{2}  \theta}  = 1
Hence, proved.

If it helped you, please mark the answer as the Brainliest. Please!
Answered by Anonymous
1
(sin^4+cos^4)
_____________. =1
1-2sin^2cos^2

(sin^2+cos^2)^2-2sin^2cos^2
_______________________=1
1-2sin^2cos^2

1-2sin^2cos^2
____________ =1. ( sin^2+ cos^2 = 1 )
1-2sin^2cos^2

1=1 (PROVED)

Thank You!
Similar questions