Plzz solve this fast
Attachments:
RadheKrishnam:
How to answer
Answers
Answered by
0
Solution :
_____________________________________________________________
Given :
The TV tower on the side of the road,.
A point on the opposite side of the tower shows an angle of elevetion of 60° & 10m away from the point the, angle of elevation decreases to 30°
_____________________________________________________________
To Find :
Height of the tower,..
&
Width of the road,..
_____________________________________________________________
Let the height of the tower be h mts,.
Let the width of the road is x mts,..
Then,
Diagram is as follows,.
A
l\\
l \ \
l \ \
I \ \
I \ \
l \ \
l \ \
l \ \
l \ \
l h \ \
l \ \
l \ \
L_________\C_______\
Bl-x mts-------l l-10mts----l D
I---------(x + 10) mts --------I
__________________________
Given as per diagram,
Buildings aremostly built perpendicular(90°) to the ground,.
Hence, ∠ABC = 90°
The line of sight is hypotenuse,. (AC & AD)
⇒ ABC & ABD are right angled triangles,.
⇒ We can apply trigonometry,.here,.
⇒ ∠ACB = 60°
⇒ ∠ADB = 30°
_________________________________
We know that,
In Δ ABC,
tan 60° = √3 =
⇒ AB = BC√3
⇒ h = x√3 ..........(i)
________________________
In Δ ABD,
⇒ tan 30° =
⇒ AB√3 = AD
⇒ h√3 = x + 10
⇒ h = ....(ii)
________________________________________
Equating (i) & (ii),
We get,
⇒
⇒ 3x = x + 10
⇒ 3x - x = 10
⇒ 2x = 10
⇒ x = 5 mts,.
Hence, the width of the road is 5 mts,.
___________________________________
From equation (i),
We get,
⇒ h = x√3
⇒ h = 5√3 mts,.
Hence, the height of the TV tower = 5√3 mts(≈8.66025 mts)
_____________________________________________________________
Hope it Helps!!
⇒ Mark as Brainliest,.
_____________________________________________________________
Given :
The TV tower on the side of the road,.
A point on the opposite side of the tower shows an angle of elevetion of 60° & 10m away from the point the, angle of elevation decreases to 30°
_____________________________________________________________
To Find :
Height of the tower,..
&
Width of the road,..
_____________________________________________________________
Let the height of the tower be h mts,.
Let the width of the road is x mts,..
Then,
Diagram is as follows,.
A
l\\
l \ \
l \ \
I \ \
I \ \
l \ \
l \ \
l \ \
l \ \
l h \ \
l \ \
l \ \
L_________\C_______\
Bl-x mts-------l l-10mts----l D
I---------(x + 10) mts --------I
__________________________
Given as per diagram,
Buildings aremostly built perpendicular(90°) to the ground,.
Hence, ∠ABC = 90°
The line of sight is hypotenuse,. (AC & AD)
⇒ ABC & ABD are right angled triangles,.
⇒ We can apply trigonometry,.here,.
⇒ ∠ACB = 60°
⇒ ∠ADB = 30°
_________________________________
We know that,
In Δ ABC,
tan 60° = √3 =
⇒ AB = BC√3
⇒ h = x√3 ..........(i)
________________________
In Δ ABD,
⇒ tan 30° =
⇒ AB√3 = AD
⇒ h√3 = x + 10
⇒ h = ....(ii)
________________________________________
Equating (i) & (ii),
We get,
⇒
⇒ 3x = x + 10
⇒ 3x - x = 10
⇒ 2x = 10
⇒ x = 5 mts,.
Hence, the width of the road is 5 mts,.
___________________________________
From equation (i),
We get,
⇒ h = x√3
⇒ h = 5√3 mts,.
Hence, the height of the TV tower = 5√3 mts(≈8.66025 mts)
_____________________________________________________________
Hope it Helps!!
⇒ Mark as Brainliest,.
Answered by
0
Hope it will help u. . . . .
Attachments:
Similar questions