Math, asked by lekhangey9ushar, 1 year ago

PROVE:cos³ A+sin³ A/cosA+sinA +cos³ A-sin³A/cosA-sinA=2

Answers

Answered by qais
9
(cos³A + sin³A)/(cosA+sinA) + (cos³A- sin³A)/(cosA-sinA)
=[(cosA+sinA)(cos²A+ sin²A - cosAsinA)]/(cosA +sinA) +
  [(cosA-sinA)(cos²A+ sin²A +cosAsinA)]/(cosA -sinA) 
=1 - cosAsinA + 1 + cosAsinA 
=2 (RHS)
Answered by Mathexpert
4
 \frac{cos^3A+sin^3A}{CosA+SinA} +  \frac{cos^3A-sin^3A}{CosA-SinA}
 \frac{(CosA+SinA)(cos^2A+sin^2A-CosASinA)}{CosA+SinA} \frac{(CosA-SinA)(cos^2A+sin^2A+CosASinA)}{CosA-SinA}

cos^2A+sin^2A+CosASinA + cos^2A+sin^2A-CosASinA1+CosASinA + 1-CosASinA

 
Similar questions