Math, asked by GeniuSk101, 1 year ago

Prove:-
cosx/1-tanx+sinx/1-cotx=cosx+sinx

Answers

Answered by iHelper
35
Hello!

L.H.S. = \dfrac{\sf cos\:x}{\sf 1 - tan\:x} + \dfrac{\sf sin\:x}{\sf 1 - cot\:x}

= \dfrac{\sf cos^{2}x}{\sf cos\:x(1 - tan\:x)} + \dfrac{\sf sin^{2}x}{\sf sin\:x(1 - cot\: x)}

= \dfrac{\sf cos^{2}x}{\sf cos\:x - sin\:x} + \dfrac{\sf sin^{2}x}{\sf sin\:x - cos\:x}

= \dfrac{\sf cos^{2}x}{\sf cos\:x - sin\:x} - \dfrac{\sf sin^{2}x}{\sf cos\:x - sin\:x}

= \dfrac{\sf cos^{2}x - sin^{2}x}{\sf cos\:x - sin\:x}

= \dfrac{\sf (cos\:x + sin\:x) \cancel{(cos\:x - sin\:x)}}{\sf \cancel{cos\:x - sin\:x}}

= \sf cos\:x + sin\:x = R.H.S.

\boxed{\sf HENCE\: PROVED}

Cheers!

GeniuSk101: Wow!!! Thanks
iHelper: You're welcome!
iHelper: You're asking whom? +Inflameoftheancient
iHelper: Yeah! This happened with me too! +ankitsagar deleted my answer without any valid reason. Tho I re-answered it again :)
Answered by helptube2002
1

Step-by-step explanation:

L.H.S. = \dfrac{\sf cos\:x}{\sf 1 - tan\:x} + \dfrac{\sf sin\:x}{\sf 1 - cot\:x}

1−tanx

cosx

+

1−cotx

sinx

= \dfrac{\sf cos^{2}x}{\sf cos\:x(1 - tan\:x)} + \dfrac{\sf sin^{2}x}{\sf sin\:x(1 - cot\: x)}

cosx(1−tanx)

cos

2

x

+

sinx(1−cotx)

sin

2

x

= \dfrac{\sf cos^{2}x}{\sf cos\:x - sin\:x} + \dfrac{\sf sin^{2}x}{\sf sin\:x - cos\:x}

cosx−sinx

cos

2

x

+

sinx−cosx

sin

2

x

= \dfrac{\sf cos^{2}x}{\sf cos\:x - sin\:x} - \dfrac{\sf sin^{2}x}{\sf cos\:x - sin\:x}

cosx−sinx

cos

2

x

cosx−sinx

sin

2

x

= \dfrac{\sf cos^{2}x - sin^{2}x}{\sf cos\:x - sin\:x}

cosx−sinx

cos

2

x−sin

2

x

= \dfrac{\sf (cos\:x + sin\:x) \cancel{(cos\:x - sin\:x)}}{\sf \cancel{cos\:x - sin\:x}}

cosx−sinx

(cosx+sinx)

(cosx−sinx)

= \sf cos\:x + sin\:xcosx+sinx = R.H.S.

Similar questions