Math, asked by Lipimishra2, 1 year ago

Prove: \frac{tanA }{1-cot A} + \frac{cotA}{1-tanA} = 1+ tanA + cotA


mysticd: It is not clear , plz , explain where is / symbol
Lipimishra2: TanA/1-cotA + cotA/1-tanA
Lipimishra2: It's the LHS
Lipimishra2: Is it clea or should I post another question?
mysticd: It's ok. Wait

Answers

Answered by mysticd
2
Hi

LHS = tanA/(1-cotA ) + cotA/(1-tanA)

= [tanA/(1-1/tanA)]+[(1/tanA)/(1-tanA)]

= [tan² A/(tanA-1)]-[1/tanA(tanA-1 )]

=[ 1/(tanA-1) ][ tan²A - 1/tanA ]

= [ 1/(tanA - 1 ) ][ (tan³ A - 1³ )/tanA ]

= [ (tanA-1)[tan²A+1×tanA + 1²]/[(tanA-1) tanA]

=( tan² A + tanA + 1 )/ tanA

= ( tan² A/tanA ) + ( tanA/tanA)+1/tanA

= tanA + 1 + cotA

= 1 + tanA + cotA

= RHS

Hence proved .

I hope this helps you.

: )

Lipimishra2: Oh, wow. Thank you so much for the help!
Answered by GauravSaxena01
1
Hey.....!!!! :)) ✌️✌️
___________________
___________________

Q. Prove: \frac{tanA }{1-cot A} + \frac{cotA}{1-tanA} = 1+ tanA + cotA

Solution:-

=> tanA / (1-1/tanA)+(1/tanA)/(1-tanA)    

=> tan2A / (tanA-1)+1 / (tanA(1-tanA))

=> (1 / (1-tanA)) ((1 / tanA)-tan2A)

=> (1 / (1-tanA)) ((1-tan3A) / tanA)

1-tan3A= (1-tanA) (1+tanA+tan2A) prove it Ans !!

=> 1 / tanA+1+tanA=1+tanA+cotA

========================================

I hope it's help you....!!! :))✌️✌️

Lipimishra2: Thanks a lot!
GauravSaxena01: my pleasure dear ✌️
Similar questions