Prove that : cos ( pie / 2 + x ) sec (-x) tan (pie -x) / sec ( 2 pie - x ) sin (pie + x) cot (pie /2 - x ) = -1
ankit8696501910:
hi
Answers
Answered by
14
Answer:
Step-by-step explanation:
we will first simplify those pie figures
cos(pi/2 +x)= -sin(x)
sec(-x)=1/cos(-x) = 1/cos(x)
tan(pi - x) = -tan(x)
sec(2pi - x) = 1/cos(2 pi -x) = 1/cos(x)
sin( pi + x)= -sin( x)
cot( pi/2 - x)= tan(x)
now feeding these values in eqn
cos ( pie / 2 + x ) sec (-x) tan (pie -x) / sec ( 2 pie - x ) sin (pie + x) cot (pie /2 - x )
=[-sin x * 1/cos x *- tan x] / [1/cos x * -sin x * tan x]
=[(sin x/cos x )* tan x] / [(-sin x /cos x) * tan x]
=[(sin x/cos x )* tan x] / -1 *[(sin x/cos x )* tan x]
= -1
Hope it helps :-)
Similar questions