Prove that (cosec A − sin A) (sec A − cos A) = 1 / (tanA + cotA)
Answers
Answered by
11
Hi ,
LHS = ( cosecA - sinA )( SecA - cosA )
= ( cosecA - 1/cosecA ) ( secA - 1/secA )
= [( cosec²A - 1 )/cosecA ][ ( sec²A - 1 )/secA ]
= ( cot²A /cosecA )( tan² A /secA )
= ( cot²A tan²A )/( cosecAsecA )
= 1/cosecAsecA
= sinAcosA ----( 1 )
RHS = 1/( tanA + cotA )
= 1/[ sinA/cosA + cosA/sinA ]
= 1/[ ( sin²A + cos²A )/( cosAsinA ) ]
= 1/[ 1/sinAcosA ]
= sinAcosA --( 2 )
( 1 ) = ( 2 )
LHS = RHS
I hope this helps you.
: )
LHS = ( cosecA - sinA )( SecA - cosA )
= ( cosecA - 1/cosecA ) ( secA - 1/secA )
= [( cosec²A - 1 )/cosecA ][ ( sec²A - 1 )/secA ]
= ( cot²A /cosecA )( tan² A /secA )
= ( cot²A tan²A )/( cosecAsecA )
= 1/cosecAsecA
= sinAcosA ----( 1 )
RHS = 1/( tanA + cotA )
= 1/[ sinA/cosA + cosA/sinA ]
= 1/[ ( sin²A + cos²A )/( cosAsinA ) ]
= 1/[ 1/sinAcosA ]
= sinAcosA --( 2 )
( 1 ) = ( 2 )
LHS = RHS
I hope this helps you.
: )
Shobhit1903:
help me
Answered by
2
answer is
..,..,.....,
(1):(2)
......,.......,.......,......
Similar questions