Math, asked by joydeep9152, 9 months ago

Prove that:
(i) tan20°tan35°tan45°tan55°tan70°=1
(ii) sin48°sec42°+cos48°cosec20°=2
(iii) sin70°/cos20°+cosec20°/sec70°-2cos70°cosec20°=0
(iv) cos80°/sin10°+cos59°cosec31°=2

Answers

Answered by jvishnupriyan17
1

Answer:

...................

Answered by topwriters
1

All proven

Step-by-step explanation:

(i) Prove tan20° tan35° tan45° tan55° tan70° = 1

 LHS = tan20° tan35° tan45° tan55° tan70°

     = tan20°. tan 70°. tan35° .tan55°. tan45°

     = tan20°. Cot(90-70)° .tan35°. Cot(90-55). tan45°

     = tan20°. Cot20°. tan35°. cot35°. tan45°

     = 1 * 1 * 1

     = 1

LHS = RHS. Hence proved.

(ii) Prove sin48° sec42° + cos48° cosec32° = 2

 LHS = sin48° sec42°+ cos48° cosec20°

     = Sin48°. Cosec(90-42)° + cos48°. Sec(90-32)°

     = Sin48°. Cosec48° + Cos48°. Sec48°  

     = 1 + 1

     = 2

LHS = RHS. Hence proved.

(iii) Prove sin70° / cos20° + cosec20° / sec70° -2cos70° cosec20° = 0

LHS = sin70°/ cos20° + cosec20°/ sec70°- 2cos70° cosec20°

    = sin70°/ Sin70° + cosec20°/ cosec20° - 2Cos70. Sec70°

    = 1 + 1 - 2(1)

    = 0

LHS = RHS. Hence proved.

(iv) Prove cos80°/ sin10° + cos59° cosec31° = 2

LHS = cos80°/ sin10°+ cos59° cosec31°

    = Cos80°/ cos80° + Cos59°. Sec59°

    = 1 + 1

    = 2

LHS = RHS. Hence proved.

Similar questions