Math, asked by 8797, 1 year ago

prove that tan1°; tan2°; tan3°… tan89°=1.

Answers

Answered by Dada1235
3
tan1.tan2.........tan89
but tan 89 can be written as cot 1[tan(90-1)=cot 1] by tan(90-theta)=cot(theta)
likewise......,
tan 88 =cot 2
tan 87= cot 3
................up to tan 46=cot 44
then middle one is tan 45 =1
so it is
tan1.tan2...........tan44.tan 45.cot44..............cot1
tan and cot cancel out by[tan (theta)*cot(theta)=1
so ....remaining is 1
answer =1

Answered by Anonymous
7

Hey there !!


Answer: 1 .



Step-by-step explanation:


= tan 1 . tan 2 . tan 3 ... tan 44 . tan 45 . tan 46 ... tan 87 . tan 88 . tan 89  



= tan 1 . tan 2 . tan 3 ... tan 44 . tan 45 . tan( 90 - 44 ) ... tan (90 - 3 ) . tan ( 90 - 2 ) . tan ( 90 - 1) 



= tan 1 . tan 2  . tan 3 ...tan44 . tan 45 . cot 44 ... cot 3 . cot 2 . cot 1 



= tan 1 . cot 1 . tan 2 . cot 2 . tan 3 . cot 3 ... tan 44 . cot 44 . tan 45 ... tan 89 . cot 89 



= 1 x 1 x 1 x ... 1 x ... x 1 . [ tan 45 = 1 ] .



= 1 .



Hence, it is solved .



THANKS



#BeBrainly .



Similar questions