Math, asked by mohan632, 1 year ago

Prove that -
tan {}^{4}   \theta +  {tan}^{2} \theta =  {sec}^{4}  \theta - sec {}^{2}  \theta

Answers

Answered by Swarnimkumar22
4
हल -

बायाँ पक्ष :

 \tan {}^{4}  \theta + tan {}^{2}  \theta \:  \\  \\  =  {tan}^{2}  \theta(tan  {}^{2} \theta + 1) \\  \\  \\  = (sec {}^{2}  \theta - 1)sec {}^{2}  \theta \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: (1 +  {tan}^{2}  \theta =  {sec}^{2}  \theta \\  \\  \\  \\  {sec}^{4}   \theta-  {sec}^{2}  \theta \:


इति सिध्दम
Answered by soumya2301
3
hope this will help uh ....
nd plz mark as brainliest ....
Attachments:
Similar questions