Math, asked by umangrai2202, 10 months ago

Prove the following: 2tan⁻¹1/2+tan⁻¹1/7=tan⁻¹31/17

Answers

Answered by BrainlyPopularman
6

TO PROVE :

 \\  { \bold{2  \: {tan}^{ - 1} ( \dfrac{1}{2} ) +  {tan}^{ - 1}( \dfrac{1}{7} )  =  {tan}^{ - 1}( \dfrac{31}{17})  }} \\

SOLUTION :

▪︎ Let's take L.H.S.

 \\  {  = \bold{2  \: {tan}^{ - 1} ( \dfrac{1}{2} ) +  {tan}^{ - 1}( \dfrac{1}{7} )   }} \\

• We know that –

 \\  \longrightarrow { \boxed{   \bold{2   \:  {tan}^{ - 1}(x ) \:  =    {tan}^{ - 1} ( \frac{2x}{1 -  {x}^{2} }  )}}} \\

• Applying formula –

 \\  {  = \bold{  \: {tan}^{ - 1}  [ \dfrac{2( \frac{1}{2} )}{1 -  {( \frac{1}{2}) }^{2} } ]  +  {tan}^{ - 1}( \dfrac{1}{7} )   }} \\

 \\  {  = \bold{  \: {tan}^{ - 1}  [ \dfrac{1}{1 -  \frac{1}{4}  } ]  +  {tan}^{ - 1}( \dfrac{1}{7} )   }} \\

 \\  {  = \bold{  \: {tan}^{ - 1}  [ \dfrac{1}{  (\frac{3}{4} ) } ]  +  {tan}^{ - 1}( \dfrac{1}{7} )   }} \\

 \\  {  = \bold{  \: {tan}^{ - 1}  ( \frac{4}{3} )  +  {tan}^{ - 1}( \dfrac{1}{7} )   }} \\

• We also know that –

 \\  \longrightarrow {  \boxed{ \bold{  \: {tan}^{ - 1}  (x )  +  {tan}^{ - 1}( y )  =  {tan}^{ - 1}  [ \frac{x + y}{1 - xy} ]  }}} \\

• Applying formula –

 \\  \ { \bold{  =  {tan}^{ - 1}  [ \dfrac{ \frac{4}{3} +  \frac{1}{7} }{1 - ( \frac{4}{3})( \frac{1}{7})  } ]  }} \\

 \\  \ { \bold{  =  {tan}^{ - 1}  [ \dfrac{  \frac{28 + 3}{21} }{1 - (  \frac{4}{21} )  } ]  }} \\

 \\  \ { \bold{  =  {tan}^{ - 1}  [ \dfrac{  \frac{31}{21} }{(  \frac{21 - 4}{21} )  } ]  }} \\

 \\  \ { \bold{  =  {tan}^{ - 1}  [ \dfrac{  \frac{31}{ \cancel{21}} }{( \frac{17}{ \cancel{21}} )  } ]  }} \\

 \\  \ { \bold{  =  {tan}^{ - 1}  (\dfrac{31}{17} )   }} \\

 \\  \ { \bold{  = R.H.S. \:  \:  \:  \:  \: (Hence \:  \: proved) }} \\

Similar questions