Math, asked by sgurpindersingh3, 8 months ago

Prove the following:
(c+a-b)
ctb-a
bta-c
xa
1
(
x6
(i)
xo
xb
ro
xo
xa​

Attachments:

Answers

Answered by anindyaadhikari13
2

\star\:\:\:\bf\large\underline\blue{Given\:To\:Prove:-}

  •   \small\small {( \frac{ {x}^{b} }{ {x}^{a} } })^{b + a - c}  \times ( \frac{ {x}^{c} }{ {x}^{b} } )^{b + c - a}   \times  {( \frac{ {x}^{a} }{ {x}^{c} } )}^{c + a - b}  = 1

\star\:\:\:\bf\large\underline\blue{Proof:-}

\star\:\:\:\bf\underline\blue{LHS:-}

  \small\small {( \frac{ {x}^{b} }{ {x}^{a} } })^{b + a - c}  \times ( \frac{ {x}^{c} }{ {x}^{b} } )^{b + c - a}  \times   {( \frac{ {x}^{a} }{ {x}^{c} } )}^{c + a - b}

  \small\small {( {x}^{b - a} })^{b + a - c}  \times ( {x}^{c - b})^{b + c - a}    \times {(  {x}^{a - c})}^{c + a - b}

  \small=  {x}^{ {b}^{2}  -  {a}^{2} + ac - bc }  \times  {x}^{  {c}^{2} -  {b}^{2}  + ab - ac}  \times  {x}^{ {a}^{2}  -  {c}^{2}  + bc - ab}

  \small=  {x}^{ \cancel {{b}^{2}  -  {a}^{2}  + ac - bc +  {c}^{2}  -  {b}^{2}  + ab - ac +  {a}^{2} -  {c}^{2} + bc - ab  }}

 =  {x}^{0}

 = 1

\star\:\:\:\bf\underline\blue{RHS:-}

 = 1

Therefore,

  \small\small {( \frac{ {x}^{b} }{ {x}^{a} } })^{b + a - c}  \times ( \frac{ {x}^{c} }{ {x}^{b} } )^{b + c - a}   \times  {( \frac{ {x}^{a} }{ {x}^{c} } )}^{c + a - b}  = 1

Hence Proved.

Answered by nehashanbhag0729
2

Answer:

hey hope u got ur answer afte ethos pic

Attachments:
Similar questions