Math, asked by soddeajay53, 6 months ago

Q11. Prove that the tangents
drawn at the ends of a diameter
of a circle are parallel.​

Answers

Answered by fflover482
0

Answer:

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively. Radius drawn to these tangents will be perpendicular to the tangents. Since alternate interior angles are equal, lines PQ and RS will be parallel

Answered by hshahi1972
8

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively.

Radius drawn to these tangents will be perpendicular to the tangents.

Thus, OA ⊥ RS and OB ⊥ PQ

∠OAR = 90º

∠OAS = 90º

∠OBP = 90º

∠OBQ = 90º

It can be observed that

∠OAR = ∠OBQ (Alternate interior angles)

∠OAS = ∠OBP (Alternate interior angles)

Since alternate interior angles are equal, lines PQ and RS will be parallel

Attachments:
Similar questions