Math, asked by AccurateGaming1233, 7 months ago

Remove the Brackets​

Attachments:

Answers

Answered by Anonymous
143

\underline{\underline{\sf{\maltese\:\:Question}}}}

\bigstar\:\:\:\sf{n\left[15-n\left(2n+5\right)\left(n-3\right)+n\left\{-15-7n\left(n-4\right)\right\}+18\right]}

\underline{\underline{\sf{\maltese\:\:Answer}}}}

\bf{\bullet\:\:\:-9n^4+29n^3+33n}

\underline{\underline{\sf{\maltese\:\:Calculations}}}}

\sf{n\left[15-n\left(2n+5\right)\left(n-3\right)+n\left\{-15-7n\left(n-4\right)\right\}+18\right]}

=\sf{n\left(15-n\left(2n+5\right)\left(n-3\right)+n\left(-15-7n\left(n-4\right)\right)+18\right)}

=\sf{n(15-2n^3+n^2+15n+n\left(-15-7n\left(n-4\right)\right)+18)}

\sf{=n(15-2n^3+n^2+15n-15n-7n^2\left(n-4\right)+18)

\sf{=n(15-2n^3+n^2+15n-15n-7n^3+28n^2+18)}

\sf{=n(-2n^3-7n^3+n^2+28n^2+15n-15n+15+18)}

\sf{=n(-2n^3-7n^3+29n^2+15n-15n+15+18)}

\sf{=n(-9n^3+29n^2+15n-15n+15+18)}

\sf{=n(-9n^3+29n^2+15+18)}

\sf{=n(-9n^3+29n^2+33)}

\sf{=n\left(-9n^3\right)+n\cdot \:29n^2+n\cdot \:33}

\sf{=-9n^3n+29n^2n+33n}

\bf{=-9n^4+29n^3+33n}


TheMoonlìghtPhoenix: Nice
Glorious31: Nice
Anonymous: Awesome!
MяƖиνιѕιвʟє: Osmm..
spacelover123: Nice
Cynefin: Perfect :)
amitkumar44481: Good :-)
Answered by Anonymous
14

Solution:-

 \rm \to \:n [15 - n(2n + 5)(n - 3) + n \{ - 15 - 7n(n - 4)  \} + 18 ]

Now using BODMAS concepts

\rm \to \:n [15 - n(2n + 5)(n - 3) + n \{ - 15 - 7n^{2} + 28n \} + 18 ]

\rm \to \:n [15 - n(2n + 5)(n - 3) - 15 n- 7n^{3} + 28n ^{2}  + 18 ]

\rm \to \:n [15 - (2n ^{2}  + 5n)(n - 3) - 15 n- 7n^{3} + 28n ^{2}  + 18 ]

 \rm \to \: n [15 - (2 {n}^{3}  - 6 {n}^{2}  + 5 {n}^{2}  - 15n) - 15n - 7 {n}^{3}  + 28 {n}^{2}  + 18 ]

 \rm \to \: n [15 - 2 {n}^{3}   +  6 {n}^{2}   -  5 {n}^{2}   + 15n - 15n - 7 {n}^{3}  + 28 {n}^{2}  + 18 ]

 \rm \to \: n [33 - 9{n}^{3}        + 29 {n}^{2}   ]

 \rm \to \: 33n - 9 {n}^{4}  + 29 {n}^{3}

BODMAS

=> B means Bracket

=> O means Of

=> D means Divide

=> M means Multiplication

=> A means Addition

=> S means Subtraction


TheMoonlìghtPhoenix: Awesome
Glorious31: Fantastic
Cynefin: Perfect :D
amitkumar44481: Great :-)
Similar questions