Computer Science, asked by nikita128, 5 months ago

ғʀᴏᴍ ᴛʜᴇ ᴛᴏᴘ ᴏғ ᴀ ᴛᴏᴡᴇʀ, ᴀ ᴍᴀɴ ғɪɴᴅs ᴛʜᴀᴛ ᴛʜᴇ ᴀɴɢʟᴇ ᴏғ ᴅᴇᴘʀᴇssɪᴏɴ ᴏғ ᴀ ᴄᴀʀ ᴏɴ ᴛʜᴇ ɢʀᴏᴜɴᴅ ɪs 30°.if ᴛʜᴇ ᴄᴀʀ ɪs ᴀ ᴅɪsᴛᴀɴᴄᴇ ᴏғ 40 m ғʀᴏᴍ ᴛʜᴇ ᴛᴏᴡᴇʀ ғɪɴᴅ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴀʟᴀ ᴛᴏᴡᴇʀ​

Answers

Answered by ғɪɴɴвαłσℜ
6

\sf{\huge{\underline{\red{Given :-}}}}

  • A man is on the top of tower .

  • Angle of depression of car on the ground is 30°.

  • The distance from tower is 30° from car.

\sf{\huge{\underline{\pink{To \:Find :-}}}}

  • The height of the tower .

\sf{\huge{\underline{\green{Solution :-}}}}

We have ,

  • The distance between car & tower is 40m.

  • The Angle of depression is 30°.

Take a right triangle ABC,

We , know tan θ =  \dfrac{perpendicular}{base}

➝ tan 30 =  \dfrac{perpendicular}{40}

We know,  \dfrac{1}{ \sqrt{3} }

 \dfrac{1}{ \sqrt{3} } =  \dfrac{perpendicular}{40}

 \dfrac{1}{ \sqrt{3} } × 40 = perpendicular

➝ Perpendicuar =  \frac{40}{ \sqrt{3} }

➝ Perpendicuar = 40× 1.733.

Perpendicular = 69.32m

Hence,The height of the tower is 69.32m.

________________________________

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf a}\put(2.8,.3){\large\bf 2a}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(3.8,1.3){\large\bf $\Theta$}\end{picture}


ᏞovingHeart: Excellent!
Answered by bhumilgarg879
1

 \huge{ { \boxed{ \mathtt { \red{✯AnSwEr✯\ }}}}}

We have ,

The distance between car & tower is 40m.

The Angle of depression is 30°.

Take a right triangle ABC,

We , know tan θ = \dfrac{perpendicular}{base}

base

perpendicular

➝ tan 30 = \dfrac{perpendicular}{40}

40

perpendicular

We know, \dfrac{1}{ \sqrt{3} }

3

1

➝ \dfrac{1}{ \sqrt{3} }

3

1

= \dfrac{perpendicular}{40}

40

perpendicular

➝ \dfrac{1}{ \sqrt{3} }

3

1

× 40 = perpendicular

➝ Perpendicuar = \frac{40}{ \sqrt{3} }

3

40

➝ Perpendicuar = 40× 1.733.

➝ Perpendicular = 69.32m

Hence,The height of the tower is 69.32m.

Similar questions
Math, 5 months ago