Math, asked by Sudhalatwal6421, 9 months ago

सीमाओं के मान प्राप्त कीजिए : \lim_{z\rightarrow1}\dfrac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1}

Answers

Answered by shadowsabers03
1

Question:-

\quad

Evaluate \displaystyle\sf {\lim_{z\to1}\dfrac {z^{\frac {1}{3}}-1}{z^{\frac{1}{6}}-1}.}

\quad

Answer:-

\quad

\displaystyle\large\boxed {\sf {\lim_{z\to1}\dfrac {z^{\frac {1}{3}}-1}{z^{\frac{1}{6}}-1}=2}}

\quad

Solution:-

\quad

We know that,

\quad

\displaystyle\sf {\lim_{x\to a}\dfrac {x^n-a^n}{x-a}=na^{n-1}\quad\quad\dots (1)}

\quad

Thus,

\quad

\displaystyle\longrightarrow\sf {\lim_{z\to1}\dfrac {z^{\frac {1}{3}}-1}{z^{\frac{1}{6}}-1}=\lim_{z\to 1}\dfrac {\left (\dfrac {z^{\frac {1}{3}}-1}{z-1}\right)}{\left (\dfrac {z^{\frac {1}{6}}-1}{z-1}\right)}}

\quad

\displaystyle\longrightarrow\sf {\lim_{z\to1}\dfrac {z^{\frac {1}{3}}-1}{z^{\frac{1}{6}}-1}=\dfrac {\displaystyle\sf{\left (\lim_{z\to 1}\dfrac {z^{\frac {1}{3}}-1^{\frac {1}{3}}}{z-1}\right)}}{\displaystyle\sf{\left (\lim_{z\to 1}\dfrac {z^{\frac {1}{6}}-1^{\frac {1}{6}}}{z-1}\right)}}}

\quad

By (1),

\quad

\displaystyle\longrightarrow\sf {\lim_{z\to1}\dfrac {z^{\frac {1}{3}}-1}{z^{\frac{1}{6}}-1}=\dfrac {\dfrac {1}{3}(1)^{\frac {1}{3}-1}}{\dfrac {1}{6}(1)^{\frac {1}{6}-1}}}

\quad

However, \displaystyle\sf {1^n=1,} right?!

\quad

\displaystyle\longrightarrow\sf {\lim_{z\to1}\dfrac {z^{\frac {1}{3}}-1}{z^{\frac{1}{6}}-1}=\dfrac {\left (\dfrac {1}{3}\right)}{\left (\dfrac {1}{6}\right)}}

\quad

\displaystyle\longrightarrow\sf {\underline {\underline {\lim_{z\to1}\dfrac {z^{\frac {1}{3}}-1}{z^{\frac{1}{6}}-1}=2}}}

\quad

The shortcut...

\quad

Suppose we are given to evaluate \displaystyle\sf {\lim_{x\to a}\dfrac {x^p-a^p}{x^q-a^q}.}

\quad

So,

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to a}\dfrac {x^p-a^p}{x^q-a^q}=\lim_{x\to a}\dfrac {\left (\dfrac {x^p-a^p}{x-a}\right)}{\left (\dfrac {x^q-a^q}{x-a}\right)}}

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to a}\dfrac {x^p-a^p}{x^q-a^q}=\dfrac {\displaystyle\sf{\left (\lim_{x\to a}\dfrac {x^p-a^p}{x-a}\right)}}{\displaystyle\sf{\left (\lim_{x\to a}\dfrac {x^q-a^q}{x-a}\right)}}}

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to a}\dfrac {x^p-a^p}{x^q-a^q}=\dfrac {pa^{p-1}}{qa^{q-1}}}

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to a}\dfrac {x^p-a^p}{x^q-a^q}=\dfrac {p}{q}\ a^{(p-1)-(q-1)}}

\quad

\displaystyle\longrightarrow\sf {\underline {\underline {\lim_{x\to a}\dfrac {x^p-a^p}{x^q-a^q}=\dfrac {p}{q}\ a^{p-q}}}}

\quad

Special Case - If \displaystyle\sf {a=1,}

\quad

\displaystyle\longrightarrow\sf {\lim_{x\to a}\dfrac {x^p-a^p}{x^q-a^q}=\dfrac {p}{q}\ 1^{p-q}}

\quad

Remember that \displaystyle\sf {1^n=1\ !}

\quad

\displaystyle\longrightarrow\sf {\underline {\underline {\lim_{x\to a}\dfrac {x^p-a^p}{x^q-a^q}=\dfrac {p}{q}}}}

\quad

So this formula can directly be applied to such questions.

\quad

And one thing also. Consider that (1).

\quad

\displaystyle\sf {\lim_{x\to a}\dfrac {x^n-a^n}{x-a}=na^{n-1}}

\quad

What about if \displaystyle\sf {a=1\ ?}

\quad

\displaystyle\sf {\lim_{x\to 1}\dfrac {x^n-1^n}{x-1}=n(1)^{n-1}}

\quad

Well, it is false that \displaystyle\sf {1^n\neq1\ !}

\quad

\displaystyle\sf {\underline {\underline {\lim_{x\to 1}\dfrac {x^n-1}{x-1}=n}}}

\quad

This formula should also be remembered.

Answered by amitnrw
0

2       \lim_{z\rightarrow1}\dfrac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1}  = 2

Step-by-step explanation:

sajeevanoonampb4du0 से   दूसरा तरीका  

\lim_{z\rightarrow1}\dfrac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1}

z = 1  प्रयोग करने पर  

= (1- 1)/(1 - 1)

= 0/0

परिभाषित नहीं

Z^(1/3) - 1  

= (Z^(1/6))² - 1²

a² - b² = (a +b)(a - b)

= (Z^(1/6) + 1) (Z^(1/6) - 1)

(Z^(1/3) - 1  )/(Z^(1/6) - 1)

=  (Z^(1/6) + 1) (Z^(1/6) - 1)/(Z^(1/6) - 1)

=   (Z^(1/6) + 1)

z = 1 प्रयोग करने पर  

= 1^(1/6) + 1

= 1 + 1

= 2

\lim_{z\rightarrow1}\dfrac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1}     = 2

और पढ़ें

सीमाओं के मान प्राप्त कीजिए :  [tex]\lim_{x\rightarrow3}\dfrac{x^4 - 81

https://brainly.in/question/15778085

सीमाओं के मान प्राप्त कीजिए

https://brainly.in/question/15778083

Similar questions