Math, asked by rock6596, 1 year ago

sec A(1-sin A)(sec A+tan A)=1​

Answers

Answered by pankajnarwal
1

Step-by-step explanation:

L.H.S.=secA(1-sinA)(secA+tanA)

=(SecA-secAsinA)(secA+tanA)

=(secA-tanA)(secA+tanA)

since secAsinA= sinA/cosA=tanA

= sec^2A-tan^2A

=1

R.H.S=L.H.S

Hence proved

Answered by BrainlySamaira
19

Answer:

\huge\underline\textsf{Question:- }

\boxed{\textsf{ Sec A(1-sin A)(sec A +tan A) =1}}

\huge\underline\textsf{Explantion:- }

\large\implies\tt \frac{1}{ \cos A } (1 -  \sin A )( \frac{1}{ \cos A }  +  \frac{ \sin A }{ \cos A } )

\large\implies\tt \frac{(1 -  \sin A )}{ \cos A } ( \frac{1}{ \cos A }  +  \frac{ \sin A}{ \cos A })

\large\implies\tt \frac{(1 -  \sin A) (1 +  \sin A )}{ \cos A   \times  \cos A }

\large \underline\textsf{identity Used:-3 }

\red{\boxed{\bf(a + b)(a - b) = a {}^{2}  - b {}^{2} }}

\underline\textsf{Now,}

\large\implies\tt \frac{1 {}^{2} -  \sin {}^{2} A }{ \cos {}^{2} A }

\large\implies{\overbrace{\boxed{\tt \frac{1 -  \sin {}^{2} A }{ \cos {}^{2} A} }}}

\large\leadsto {\boxed{\tt= 1 = RHS}}

\large\underline{\underline{\texttt{\purple{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:Hence proved.}}}}

Similar questions