Math, asked by user1558, 1 year ago

sec theta - tan theta = a+1/a-1 ,then cos theta=?​

Answers

Answered by MEGAVILLAGE007
2

Step-by-step explanation:

HOPE MY ANSWER HELPS YOU

Attachments:
Answered by vhpsharitha
1

hey mate,...

here's your answer,...

[tex] \sec( \alpha ) -  \tan( \alpha ) =  \frac{a + 1}{a - 1}  \\  \frac{1}{ \cos( \alpha ) } -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } =  \frac{ {(a + 1)}^{2} }{ {a}^{2} - 1  }  \\  =  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) } =  \frac{( {1 + a)}^{2} }{ {a}^{2} - 1 }   \\  =  \frac{1 -  \sin( \alpha ) \times 1 +  \sin( \alpha )  }{ \cos( \alpha ) \times (1 +  \sin( \alpha ) ) }   =   \frac{ {(1 + a)}^{2} }{ {a}^{2} - 1 }  \\  = \frac{ {1 -  \sin( \alpha ) }^{2} }{ \cos( \alpha ) \times (1 +  \sin( \alpha )  } =  \frac{ {(1 + a)}^{2} }{ {a}^{2} - 1 }  \\  =  \frac{ { \cos( \alpha ) }^{2} }{ \cos( \alpha ) \times (1 +  \sin( \alpha ) ) } =   \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) } =  \frac{ {(1 + a)}^{2} }{ {a}^{2} - 1 }  \\  =  \frac{ \cos( \alpha ) }{1}  =  \frac{ {(1 + a)}^{2}(1 +  \sin( \alpha ) }{ {a}^{2} - 1 } </p><p></p><p></p><p>

hope it helps you

pls mark me as the brainliest,...

Similar questions