Show that sin^2x+sin^2(2pie/3+x)+sin^2(2pie/3-x)=3/2
Answers
Answered by
0
Answer:
Step-by-step explanation:
Sin²x + Sin²(2π/3 + x) + Sin²(2π/3 - x) = 3/2
L.H.S
We know that Sin(A+B) = SinACosB + CosASinB
Sin(A-B) = SinACosB - CosASinB
Sin²x + Sin²(2π/3 + x) + Sin²(2π/3 - x)
= Sin²x + [Sin(2π/3).Cosx + Cos(2π/3)Sinx]² + [Sin(2π/3).Cosx - Cos(2π/3)Sinx]²
= Sin²x + [√3/2*Cosx + (-1/2)Sinx]² + [√3/2*Cosx - (-1/2)Sinx]²
= Sin²x + [√3/2Cosx - 1/2Sinx]² + [√3/2Cosx + 1/2Sinx]²
= = Sin²x + 3/4Cos²x + 1/4Sin²x - 2(√3/2Cosx)(1/2Sinx) + 3/4Cos²x + 1/4Sin²x + 2(√3/2Cosx)(1/2Sinx)
= Sin²x + 3/2Cos²x + 1/2Sin²x
= 3/2Sin²x + 3/2Cos²x
= 3/2(Sin²x + Cos²x)
= 3/2.
= R.H.S
Hence proved
Similar questions