Math, asked by abhirupkundu190, 4 months ago

Simplify :- root3 - root 2/ root 3 + root 2

Answers

Answered by DilnoorSinghSaini
1

Answer:

see this picture for answer

Attachments:

Anonymous: Your answer is wrong because you taken a² + 2ab - b². It should be a² - 2ab + b²
Answered by Anonymous
6

Given:

\large \sf \dfrac {\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}

Solution:

\implies \sf \dfrac {\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}

Multiply the given fraction by \bf \dfrac {\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}

We get,

\implies \sf \dfrac {(\sqrt{3} - \sqrt{2}) \times (\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2}) \times (\sqrt{3} - \sqrt{2})}

Using \bf (a+b)(a-b) = a^2 - b^2

\implies \sf \dfrac {(\sqrt{3} - \sqrt{2}) \times (\sqrt{3} - \sqrt{2})}{3 - 2}

\implies \sf \dfrac {(\sqrt{3} - \sqrt{2}) \times (\sqrt{3} - \sqrt{2})}{1}

\implies \sf (\sqrt{3} - \sqrt{2}) \times (\sqrt{3} - \sqrt{2})

\implies \sf (\sqrt{3} - \sqrt{2})^2

Using \bf a^2 - b^2 = a^2 - 2ab + b^2

\implies \sf 3 - 2 \sqrt{6} + 2

\implies \sf 5 - 2 \sqrt{6}

\large{\underline{\boxed{\underline{\bf \therefore 5 - 2 \sqrt{6}}}}}

Similar questions