simplify this question
Attachments:
Answers
Answered by
3
Answer is perhaps 4.
Let us call 8ⁿ = X.
8ⁿ⁺¹ = 8 * 8ⁿ = 8 X
2³ⁿ⁺¹ = 2³ⁿ * 2 = 2 * (2³)ⁿ = 2 * 8ⁿ = 2 X
2³ⁿ⁻² = 2³ⁿ /2² = 8ⁿ * 1/ 4
We substitute these in the given expression:
Let us call 8ⁿ = X.
8ⁿ⁺¹ = 8 * 8ⁿ = 8 X
2³ⁿ⁺¹ = 2³ⁿ * 2 = 2 * (2³)ⁿ = 2 * 8ⁿ = 2 X
2³ⁿ⁻² = 2³ⁿ /2² = 8ⁿ * 1/ 4
We substitute these in the given expression:
boombeach:
hey are you mad
Answered by
2
Heya User,
--> Let's see :-->
[tex] \frac{ 6(8)^{n+1} + 16(2)^{3n-2} }{ 10(2)^{3n+1} - 7(8)^n } \\\\ Converting\: every\: term\: in\: the\: form \: (8)^n \\ = \frac{ 48 (8)^n + 2^4 * (2)^{3n-2}}{ 20(2)^{3n} - 7(8)^n} \\ = \frac{48(8)^n + 4(2)^{3n}}{ 20(8)^n - 7(8)^n}\\ [/tex]
[tex]Putting (8)^n as \: x \: and \: solving\:our\:result:- \\\\ = [ 48x + 4x ] / [ 20x - 13x ] = 52x / 13x = 4 \\ And\:so,\:you\:get\:your \:answer.....[/tex]
--> Let's see :-->
[tex] \frac{ 6(8)^{n+1} + 16(2)^{3n-2} }{ 10(2)^{3n+1} - 7(8)^n } \\\\ Converting\: every\: term\: in\: the\: form \: (8)^n \\ = \frac{ 48 (8)^n + 2^4 * (2)^{3n-2}}{ 20(2)^{3n} - 7(8)^n} \\ = \frac{48(8)^n + 4(2)^{3n}}{ 20(8)^n - 7(8)^n}\\ [/tex]
[tex]Putting (8)^n as \: x \: and \: solving\:our\:result:- \\\\ = [ 48x + 4x ] / [ 20x - 13x ] = 52x / 13x = 4 \\ And\:so,\:you\:get\:your \:answer.....[/tex]
Similar questions