Math, asked by anderson10112330, 1 year ago

sin 54° + cos 54°.tan 18°

Answers

Answered by MaheswariS
5

Answer:

sin54+cos54.tan18=1

Step-by-step explanation:

Sin 54° + cos 54°.tan 18° 

\boxed{\begin{minipage}{6cm}Formula used:\\ \\cos3A=4\:cos^3A-3\:cosA\\\\sin3A=3\:sinA-4\:sin^3A\\\\sin18^{\circ}=\frac{\sqrt{5}-1}{4}\\\\cos36^{\circ}=\frac{\sqrt{5}+1}{4}\end{minipage}}

sin54+cos54.tan18

=sin3(18)+cos3(18).\frac{sin18}{cos18}

=[3\:sin18-4\:sin^318]+[4\:cos^318-3\:cos18].\frac{sin18}{cos18}

=[3\:sin18-4\:sin^318]+cos18[4\:cos^218-3].\frac{sin18}{cos18}

=[3\:sin18-4\:sin^318]+[4\:cos^218-3].sin18

=sin18[3-4\:sin^218+4\:cos^218-3]

=sin18[-4\:sin^218+4\:cos^218]

=sin18[-4\:sin^218+4\:cos^218]

=4\:sin18[cos^218-sin^218]

=4\:sin18[\:cos2(18)]

=4\:sin18\:cos36

=4(\frac{\sqrt{5}-1}{4})(\frac{\sqrt{5}+1}{4})

=4(\frac{(\sqrt{5})^2-1^2}{16})

=4(\frac{5-1}{16})

=4(\frac{4}{16})

=1

\implies\:\boxed{sin54+cos54.tan18=1}

Similar questions