Math, asked by patelatish5528, 1 year ago

Solve 7cos2x + 3sin2x = 4

Answers

Answered by bituin
3
.......................
Attachments:
Answered by pinquancaro
2

Answer:

The solution for x is

x=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3}

Step-by-step explanation:

Given : Expression 7\cos^2x+3\sin^2x=4

To find : Solve the given expression ?

Solution :

We solve the expression by splitting the term,

7\cos^2x+3\sin^2x=4

4\cos^2x+3\cos^2x+3\sin^2x=4

4\cos^2x+3(\cos^2x+\sin^2x)=4

We know, \cos^2x+\sin^2x=1

4\cos^2x+3(1)=4

4\cos^2x=1

\cos^2x=\frac{1}{4}

\cos x=\pm\frac{1}{2}

I case : \cos x=\frac{1}{2}

x=\frac{\pi}{3}

x = 2\pi-\frac{\pi}{3} \\\\x =\frac{5\pi }{3}

II case : \cos x=-\frac{1}{2}

x=\pi-\frac{\pi}{3}=\frac{2\pi}{3}

x =\pi+\frac{\pi}{3} \\\\x =\frac{4\pi }{3}

Therefore, The solution for x is

x=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3}

Similar questions