Math, asked by megharhindocha, 1 year ago

Solve a (x+y)+b (x -y)=a^2-ab+b ^2 and a (x+y)-b(x-y)=a ^2+ab-b ^2

Answers

Answered by sivaprasath
222
Solution:

_____________________________________________________________


Given:

a(x+y) + b(x-y) = a² - ab + b² ..(i).,

a(x+y) - b(x-y) = a² + ab - b² ...(ii)

_____________________________________________________________

To find,

The values of x and y.

_____________________________________________________________


Adding both the equations,

We get,

=> a(x + y) + b(x - y) + a(x + y) - b(x - y) = a² - ab + b² + a² +ab - b²

=> 2a(x + y) = 2a²

=> x + y = a ...(iii),
____________________

Subtracting (ii) from (i),

=> a(x + y) + b(x - y) -(a(x + y)  - b(x - y)) = a² - ab + b² - (a² + ab -b²)

=> a(x + y) +  b(x - y) - a(x - y) + b(x - y) = a² - ab + b² - a² - ab + b²

=> 2b(x - y) = -2ab + 2b²

=> 2b(x - y) = 2b² - 2ab

=> 2b(x - y) = 2b(b - a)

=> x - y = b - a ..(iv)

_______________________


Adding (iii) & (iv),

We get,

=> (x + y) + (x - y) a + b- a

=> 2x = b

=> ∴ x =  \frac{b}{2}

__________________________

Substituting value of x in (iv),

We get,

=> x - y = b - a

=>  \frac{b}{2} - y = b - a

=> -y = b-a- \frac{b}{2}

=> -y =  \frac{b}{2} - a

=> ∴ y = a - \frac{b}{2}

_____________________________________________________________

                                         Hope it Helps!!
Answered by Bhavna1971
60

Answer:

Step-by-step explanation:

Ans.x=b2/2a

Y=2a2+b2/2ab

Attachments:
Similar questions