Math, asked by jignesh7060, 1 year ago

Solve : (D2+1) y = x2sin2x ​

Answers

Answered by Swarup1998
9

Solution:

The given differential equation is

(D² + 1) y = x² sin2x ..... (1)

To find C.F.

Auxiliary equation is m² + 1 = 0 or, m = ± i

Therefore C. F. = C₁ cosx + C₂ sinx

To find P.I.

Since the C.F. does not include x² and sin2x, we take

yₚ = (Ax² + Bx + C) (D sin2x + E cos2x)

Then, Dyₚ

= (Ax² + Bx + C) (2D cos2x - 2E sin2x) + (2Ax + B) (D sin2x + E cos2x)

and D²yₚ

= (Ax² + Bx + C) (- 4D sin2x - 4E cos2x) + (2Ax + B) (2D cos2x - 2E sin2x) + (2Ax + B) (2D cos2x - 2E sin2x) + 2A (D sin2x + E cos2x)

= - 4AD x² sin2x - 4AE x² cos2x - 4 BD x sin2x - 4BE x cos2x - 4CD sin2x - 4CE cos2x + 4AD x cos2x - 4AE x sin2x + 2BD cos2x - 2BE sin2x + 4AD x cos2x - 4AE x sin2x + 2BD cos2x - 2BE sin2x + 2AD sin2x + 2AE cos2x

= (- 4AD) x² sin2x + (- 4AE) x² cos2x + (- 4BD - 4AE - 4AE) x sin2x + (- 4BE + 4AD + 4AD) x cos2x + (- 4CD - 2BE - 2BE + 2AD) sin2x + (- 4CE + 2BD + 2BD + 2AE) cos2x

= (- 4AD) x² sin2x + (- 4AE) x² cos2x + (- 4BD - 8AE) x sin2x + (- 4BE + 8AD) x cos2x + (- 4CD - 4BE + 2AD) sin2x + (- 4CE + 4BD + 2AE) cos2x

From (1), we get

D²yₚ + yₚ = x² sin2x

or, (- 4AD) x² sin2x + (- 4AE) x² cos2x + (- 4BD - 8AE) x sin2x + (- 4BE + 8AD) x cos2x + (- 4CD - 4BE + 2AD) sin2x + (- 4CE + 4BD + 2AE) cos2x + (Ax² + Bx + C) (D sin2x + E cos2x) = x² sin2x

or, (- 4AD) x² sin2x + (- 4AE) x² cos2x + (- 4BD - 8AE) x sin2x + (- 4BE + 8AD) x cos2x + (- 4CD - 4BE + 2AD) sin2x + (- 4CE + 4BD + 2AE) cos2x + AD x² sin2x + AE x² cos2x + BD x sin2x + BE x cos2x + CD sin2x + CE cos2x = x² sin2x

or, (- 3AD) x² sin2x + (- 3AE) x² cos2x + (- 3BD - 8AE) x sin2x + (- 3BE + 8AD) x cos2x + (- 3CD - 4BE + 2AD) sin2x + (- 3CE + 4BD + 2AE) cos2x = x² sin2x

Comparing among the coefficients, we write

- 3AD = 1 or, AD = - 1/3

- 3AE = 0 or, AE = 0

- 3BD - 8AE = 0 or, BD = 0

- 3BE + 8AD = 0 or, BE = - 8/9

- 3CD - 4BE + 2AD = 0 or, CD = 26/27

- 3CE + 4BD + 2AE = 0 or, CE = 0

Thus yₚ = AD x² sin2x + AE x² cos2x + BD x sin2x + BE x cos2x + CD sin2x + CE cos2x

= - 1/3 * x² sin2x - 8/9 * x cos2x + 26/27 * sin2x

∴ the complete solution is

y = C₁ cos2x + C₂ sin2x - 1/3 * x² sin2x - 8/9 * x cos2x + 26/27 * sin2x

NOTE:

The calculation is quite big because I did not multiply the terms of y in the beginning and we have terms like AD, AE, etc. When you solve this problem at home, remember to take single constants A, B, C etc.

Similar questions