solve the differential equation dy/dx + y cotx =cosx
Answers
Answered by
4
Answer:
Comparing the given equation with first order differential equation,
dydx+Py=Q(x), we get, P=cotxandQ(x)=2cosx
So, Integrating factor (I.F)=e∫cotxdx
I.F.=eln|sinx|=sinx
we know, solution of differential equation,
y(I.F.)=∫Q(I.F.)dx
∴Our solution will be,
ysinx=∫sinx(2cosx)dx
⇒ysinx=∫sin2xdx
⇒ysinx=−cos(2x)2+c
At y=0andx=π2, equation becomes
0=−cosπ2+c⇒c=−12
So, solution will be,
ysinx=−cos2x2−12
⇒2ysinx+cos2x+1=0
Similar questions