Solve the following linear equations and verify the solution: c) 1/x+2 + 1/4= 1/2
Answers
CelestialCentrix
Answer:
⇒
x+2
1
+
4
1
\begin{gathered} \tt⇒ \frac{1}{x + 2} + \frac{ \frac{1}{4} \times (x + 2) }{x + 2} \\ \end{gathered}
⇒
x+2
1
+
x+2
4
1
×(x+2)
\begin{gathered} \tt⇒ \frac{1 + \frac{1}{4} \times( x + 2) }{x + 2} \\ \end{gathered}
⇒
x+2
1+
4
1
×(x+2)
\begin{gathered} \tt⇒ \frac{1 + \frac{x + 2}{4} }{x + 2} \\ \end{gathered}
⇒
x+2
1+
4
x+2
\begin{gathered} \t⇒t \frac{ \frac{x}{4} + \frac{x}{3} }{x + 2} \\ \end{gathered}
\t⇒t
x+2
4
x
+
3
x
\begin{gathered} \tt⇒( \frac{x}{4} + \frac{3}{2} ) \times \frac{1}{x + 2} \\ \end{gathered}
⇒(
4
x
+
2
3
)×
x+2
1
\begin{gathered} \tt⇒ \frac{x + 6}{4} \times \frac{1}{x + 2} \\ \end{gathered}
⇒
4
x+6
×
x+2
1
\begin{gathered} \tt⇒ \frac{1}{4} \times x + 6 \times \frac{1}{x + 2} \\ \end{gathered}
⇒
4
1
×x+6×
x+2
1
\begin{gathered} \tt ⇒\frac{1}{4} \times \frac{1}{x + 2} \times x + 6 \\ \end{gathered}
⇒
4
1
×
x+2
1
×x+6
\begin{gathered} \tt⇒ \frac{x + 6}{4x + 8} = \frac{1}{2} \\ \end{gathered}
⇒
4x+8
x+6
=
2
1
\tt❐ x = 2❐x=2