Math, asked by py2113573, 3 months ago

solve the following P.D.E. x(y-z)p+y(z-x)q = z(x-y)​

Answers

Answered by PharohX
52

Answer:

 \large \green{ \underline{ \sf \: Solution :  - }}

 \sf It  \: is \:  lagrange \: form \: like

 \sf \: Pp+Qq=R

 \sf \: Hence \:  its  \: Solution \:  is

  \sf : \implies \frac{dx}{P}  =  \frac{dy}{Q}  =  \frac{dx}{R}  \\

  \sf : Given  \:  \: Eq.

 \sf \: x(y - z)p + y(z - x)q = z(x - y)

 \sf \: Appling \:  \:  Lagrange \:  \:  eq.

  \sf \frac{dx}{x(y - z)}  =  \frac{dy}{y(z - x)}  =  \frac{dx}{z(x - y)}  \:  \:  \: ...(i)\\

 \sf \: Using \:  proportion \:  property

 \sf \: Hence \:  first \:  solution

 :   \sf\implies\frac{dx + dy + dz}{xy - xz + yz - xyzx - zy}  = k \\

 :   \sf\implies\frac{dx + dy + dz}{0}  = k \\

 :   \sf\implies \: dx + dy + dz  = 0 \\

 \sf \: Now \:  integrating \:  this

 :   \sf\implies \:  \int (dx + dy + dz  )=  \int(0) \\

 \sf  :  \implies \: x + y + z = a \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(ii)

 \sf \: Again \:  From \:  eq.  \: 1

 \sf \: divide \: by \:x,y,z \: in \: both \: num. \: and \: denominator \:  \: respectivly

   \large\sf \frac{ \frac{dx}{x} }{ \frac{x(y - z)}{x} }  =  \frac{ \frac{dy}{y} }{ \frac{y(z - x)}{y} }  =  \frac{ \frac{dz}{z} }{ \frac{z(x - y)}{z} } \\

   \large\sf \frac{ \frac{dx}{x} }{ \frac{(y - z)}{} }  =  \frac{ \frac{dy}{y} }{ \frac{(z - x)}{} }  =  \frac{ \frac{dz}{z} }{ \frac{(x - y)}{} } \\

  \large \sf \: :  \implies \:  \frac{ \frac{dx}{x} +  \frac{dy}{y}  +  \frac{dz}{z}  }{y - z + z - x + x - y}  = k \\

  \large \sf \: :  \implies \:  \frac{ \frac{dx}{x} +  \frac{dy}{y}  +  \frac{dz}{z}  }{0}  = k \\

 \sf : \implies \:  \frac{dx}{x} +  \frac{dy}{y}  +  \frac{dz}{z} = 0 \\

 \sf \: Now \:  integrating \:  this

 \sf : \implies \:   \int\frac{dx}{x} +   \int\frac{dy}{y}  +   \int\frac{dz}{z} =  \int0 \\

 \sf :  \implies \:  log(x)  +  log(y)  +  log(z)  = b \:  \:  \:  \:  \:  \:  \: ......(iii)

 \sf \: Now \: solution  \: is

 \sf \: f(a) = b

  :  \implies \green{ \boxed{ \: \sf \:  f(x + y + z) =  log(x)  +  log(y)  +  log(z) }} \\

 \sf \green{ \boxed{ \pink{ \sf \: Mark \:  as  \: Brainlist \:  if \:  helpful }}}

Similar questions