Math, asked by drshrutishruti5970, 9 months ago

Solve the following quadratic equations by factorization:
(1/x+4)-(1/x-7)=11/30,x≠4,7

Answers

Answered by ashishks1912
3

The values of x in the given quadratic equation is 1 and 2 are the roots

Step-by-step explanation:

Given quadratic equation is \frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30} and x\neq 4,7

To solve the given equation by Factorization method :

  • \frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}  
  • \frac{1(x-7)-1(x+4)}{(x+4)(x-7)}=\frac{11}{30}
  • \frac{x-7-1(x)-1(4)}{x(x)+x(-7)+4(x)+4(-7)}=\frac{11}{30}
  • \frac{x-7-x-4}{x^2-7x+4x-28}=\frac{11}{30}
  • \frac{-11}{x^2-3x-28}=\frac{11}{30}
  • \frac{30}{x^2-3x-28}=\frac{11}{-11}
  • \frac{30}{x^2-3x-28}=-1
  • 30=-1(x^2-3x-28)
  • 30=-x^2+3x+28

Rewritting we get

  • -x^2+3x+28=30

Dividing by "-" on both sides

  • x^2-3x-28=-30
  • x^2-3x-28+30=0
  • x^2-3x+2=0
  • (x-1)(x-2)=0
  • x-1=0 or x-2=0
  • x=1 or x=2

Therefore the values of x is 1 and 2

Similar questions