Math, asked by lydia4857, 11 months ago

Solve the following quadratic equations by factorization:
(x-5)(x-6)=25/(24)²

Answers

Answered by ashishks1912
1

The solved value of x in the given quadratic equation are \frac{145}{24} and \frac{119}{24}

Step-by-step explanation:

Given equation is (x-5)(x-6)=\frac{25}{24^2}

To solve the given equation by Factorization method :

  • (x-5)(x-6)=\frac{25}{24^2}
  • (x-5)(x-6)=\frac{25}{576}
  • x(x-6)-5(x-6)=\frac{25}{576}
  • x(x)-x(6)-5(x)-5(-6)=\frac{25}{576}
  • x^2-6x-5x+30=\frac{25}{576}
  • x^2-6x-5x+30=\frac{25}{576}
  • x^2-11x+30=\frac{25}{576}
  • x^2-10x-x+25+5=\frac{25}{576}
  • x^2-10x+25-(x-5)=\frac{5^2}{24^2} 
  • (x-5)^2-(x-5)-(\frac{5}{24})^2=0

Let a=x-5

  • Then the above equation becomes
  •  a^2-a-(\frac{5}{24})^2=0
  • a^2-\frac{25a}{24}+\frac{y}{24}-\frac{5^2}{24^2}=0
  • a(a-\frac{25}{24})(\frac{1}{24})(a-\frac{25}{24})=0
  • (a-\frac{25}{24})(a+\frac{1}{24})=0

(a-\frac{25}{24})=0 or (a+\frac{1}{24})=0

  • a=\frac{25}{24}
  • x-5=\frac{25}{24} ( since a=x-5)
  • x=\frac{25}{24}+5
  • x=\frac{25+24(5)}{24}
  • x=\frac{25+120}{24}
  • x=\frac{145}{24}

 Now (a+\frac{1}{24})=0

  • a=-\frac{1}{24}
  • x-5=-\frac{1}{24}
  • x=\frac{-1}{24}+5
  • x=\frac{-1+5(24)}{24}
  • x=\frac{-1+120}{24}
  • x=\frac{119}{24}

Therefore the values of x are \frac{145}{24} and \frac{119}{24}

Similar questions