Math, asked by katmishra7, 9 months ago

solve the simultaneous equation.(guy's plz help)​

Attachments:

Answers

Answered by MohakBiswas
2

\bf\large\blue{Question\::-}

  • Solve the linear equation :-

y - 6 =  \frac{1}{6} x

 \frac{3}{4} x = 1 + y

\bf\large\blue{Solution\::-}

y - 6 =  \frac{1}{6} x

 \implies 6(y - 6) = x

 \implies6y - 36 = x

 \implies6y - x = 36  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:   \:  \:  \:  \:  \: \:  \: ... \: (i)

 \frac{3}{4} x = 1 + y

 \implies3x = 4(1 + y)

 \implies3x = 4 + 4y

 \implies4y - 3x =  - 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ... \: (ii)

\star Now, multiplying equation (i) by 3.

18y - 3x = 108 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:... \:  (iii)

\star Now, substracting equation (ii) from equation (iii)

we get :-

1</em><em>4</em><em>y = 112

 \implies \: y = </em><em>8</em><em>

\star Now, Substituting the value of y in equation (i) :-

6y - x = 36

 \implies4</em><em>8</em><em> - x = 36

 \implies x =   </em><em>1</em><em>2</em><em>

\bf\large\blue{Answer\::-}

  • Value of x is 12.
  • Value of y is 8.
Similar questions