Math, asked by sumitverma0108, 1 year ago

solve this true or false...is it true or false?? justify your answer

Attachments:

kvnmurty: the number of points is too less.... You should split each of the five parts into five different questions. It is is not simple .. it is time consuming. please do that way

Answers

Answered by kvnmurty
3
answers:     i). True     ii). false   iii) true  iv) false   v)  true
==========================================
1. Let y1(x), y2(x) be two solutions.   Let  Y(x) = y2(x) - y1(x)
    Given  y1(0) = y2(0) = 0 .  Hence,  Y(0) = 0
               y1' = x² + y1²        , y2' = x²+y2²
    So Y' = y2' - y1' = (y2-y1) (y2+y1)
    =>  Y'(0) = Y(0) *(y2+y1) = 0

    Find Y'' = y2'' - y1'' = 2 (y2-y1)(x²+y2²+y1²-y1 y2)
    So    Y''(0) = Y(0) * (factor) = 0   

    Thus all derivatives of Y(x) at x=0 are zero, as Y(x) is a factor.
    Hence,  n th derivatives of y1 and y2 are always equal, in the
       neighbourhood of x=0. ie.,  - h< x < h, for some small h.

    Hence, if we take the Taylor series for y1 and y2, they will be equal.
    So there is only one unique solution for the given ODE. 
========
2.  Ortho Traj is not  x² + 2 y² = c²
     Given Parabolas :   y² = 4 a x
        y' = 4a/2y = y/2x   by eliminating a.
     Ortho traj :   y' = -2x/y
      So    y y' = - 2x
             y²/2 = - x² + c
============
3.  first find normal form of    y'' - 4 x y' + (4x²-1) y = 0
      y = u(x) v(x).                  here   p(x) = -4x     q(x) = 4x²-1 
                                                       p'(x) = -2x

     For normal form:  v u'' + Q(x) u = 0,  we find v, u and Q(x).
           v = exp(- integral p/2 dx) = exp(x²)
          Q(x) = p v' + v'' + q v = v (q - p²/4 - p'/2) 
                   = exp(x²) [4x² - 1 - 4x² - (-4/2)] = exp(x²) = v

    Normal form:  exp(x²) u'' + exp(x²) u = 0
    Thus the normal form for the given y'' - 4x y' + (4x²-1) y = -3 exp(x²) sin2x
      will be   u'' + u = -3 sin2x.... Just substitute and verify.
    In the question  the normal form is given in terms of v. Here I did in terms of u. u and v are exchanged.
===============
4)  given z = - [y + f(x-y)]
              partial derivatives:   dz/dx = - f '(x-y) ....  dz/dy = - 1 - f(x-y) * -1
    z² = y² + [f(x-y)]² + 2y f(x-y)
Differentiate (partial)
   2z dz/dx = 2 f(x-y) * f '(x-y) + 2 y f '(x-y)
   2z dz/dy = 2 y + 2 f(x-y) * f '(x-y) *(-1) + 2 f(x-y) + 2y f '(x-y)*(-1)
ADD these two eq:
     2 z [dz/dx + dz/dy ] = 2 y + 2 f(x-y) = - 2 z  (as given)
     so   dz/dx + dz/dy = -1   CONTRADICTION
===========
5.
  General Differential (partial DE) equation in two variables or 2nd degree:
    A u_xx + 2 B u_xy + C u_yy + D u_x + E u_y + F = 0 

    Evaluate  Z = Det | A   B |    =  AC - B
².   If  Z < 0, then it is hyperbolic in x, y.
                                  | B   C | 
    For the given one:   A = 1 ,  B = x
²/2 ,  C = -x²/2 - 1/4
    So  Z = - x²/2 - 1/4 - x⁴/4  < 0  for all x.
    So the solution   u(x,y) is hyperbolic.   u(x,y) = f(u_x, u_y, x, y)
    the solution can be simplified in the above manner.


kvnmurty: wait. i will complete ..
kvnmurty: click on red heart thanks above
sumitverma0108: bhai also please solve my other questions
kvnmurty: these are degree or engineering subjects. u should be able to do them... right ?
Answered by ItzCuteChori
0

\huge\underline{\underline{\mathfrak{\red{A}\green{n}\pink{s}\orange{w}\blue{e}{r}}}}

1. TRUE

2. FALSE

3. TRUE

4. FALSE

5. TRUE

____________________________________

20 thanks ❤️ = Inbox

Snapchat : vidhya_dawa2020

follow me ✨✨✨✨

Instagram : @buzy_.bee_

Similar questions