Math, asked by anshikajaiswal826, 11 months ago

Sum of the areas of two squares is 468 m. If the difference of their
parameters is 24 m, find the sides of two squares.​

Answers

Answered by Sauron
62

Answer:

The sides are 12 m and 18 m.

Step-by-step explanation:

Given :

Sum of the areas = 468 m²

Difference between their perimeters = 24 m

To find :

The sides of each square

Solution :

Let the sides be -

  • One as x
  • Second as y

Sum of their areas = 468 m²

\boxed{\sf{Area=Side \times Side}}

\sf{\longrightarrow} \: (x \times x)  + (y \times y) = 468   \\  \\ \sf{\longrightarrow} \:{x}^{2}  +  {y}^{2}  = 468 ----\rm{\gray{(1)}}

\rule{300}{1.5}

Difference between the perimeter = 24 m

\boxed{\sf{Perimeter = Side \times 4}}

\sf{\longrightarrow} \:(4 \times x)  - (4 - y) = 24\\  \\ \sf{\longrightarrow} \:4x - 4y = 24  \\  \\ \sf{\longrightarrow} \:x - y = 6 \\  \\ \sf{\longrightarrow} \:x = 6 + y----\rm{\gray{(2)}}

\rule{300}{1.5}

Substitute the value of 'x' from equation (2) in equation (1) -

\sf{\longrightarrow} \: {x}^{2}   +   {y}^{2}  = 468 \\  \\ \sf{\longrightarrow} \:(y + 6)^{2} +  {y}^{2}  = 468 \\  \\ \sf{\longrightarrow} \:  {y}^{2}  +  {6}^{2}  + 2 \times y \times 6 +  {y}^{2}  = 468 \\  \\ \sf{\longrightarrow} \:2 {y}^{2}  + 36 + 12y  = 468 \\  \\ \sf{\longrightarrow} \: {y}^{2}  + 36 + 12y - 468 = 0 \\  \\ \sf{\longrightarrow} \: {y}^{2}  + 12y - 432 = 0 \\  \\ \sf{\longrightarrow} \: {y}^{2}  + 6y  - 216 = 0 \\  \\ \sf{\longrightarrow} \: {y}^{2}  + 18y - 12y - 216 = 0 \\  \\ \sf{\longrightarrow} \:y(y + 18) - 12(y + 18) = 0 \\  \\ \sf{\longrightarrow} \:(y + 18)(y - 12) = 0 \\  \\ \sf{\longrightarrow} \:y + 18 = 0 \:  \: or \:  \: y - 12 = 0 \\  \\ \sf{\longrightarrow} \:y =  - 18  \:  \: or \:  \: y = 12

Side can't be negative, hence the side is 12 m

\rule{300}{1.5}

The side of the second Square -

\sf{\longrightarrow} \:x = y + 6 \\  \\ \sf{\longrightarrow} \:x = 12 + 6 \\  \\ \sf{\longrightarrow} \:x = 18

Side of the second Square = 18 m

\therefore The sides are 12 m and 18 m.

Answered by Anonymous
69

 \bf{ \underline{ \:  \: Given :}}

  • Sum of the area of two squares = 468
  • Difference of their perimeter = 24 m

 \bf{ \underline{ \:  \: To Find  :}}

  • Side of both squares

Let the side of one square is x

and that of second square is y

Sum of the area of two squares = 468

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{ \underline{Area =  Side \times Side}}}

 \rightarrow \:  \tt{(x \times x) + (y \times y) = 468} \\  \\  \rightarrow \:  \tt{ {x}^{2} +  {y}^{2} = 468 -  -  -  -  - (1)  }

Difference of their perimeter = 24 m

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{ \underline{Perimeter =  4 \times Side}}}

 \rightarrow \:  \tt{(4 \times x) - (4 \times y) = 24} \\  \\ \rightarrow \:  \tt{4x - 4y = 24} \\  \\ \rightarrow \:  \tt{ \cancel{ \:4}(x - y) =  \cancel{24}} \\  \\ \rightarrow \:  \tt{x - y = 6} \\  \\ \rightarrow \:  \tt{x = 6 + y -  -  -  -  - (2)}

Putting the value of x in equation (1)

\rightarrow \:  \tt{ {x}^{2} +  {y}^{2} = 468  } \\  \\ \rightarrow \:  \tt{ {(y + 6)}^{2}  +  {y}^{2} = 468 } \\  \\ \rightarrow \:  \tt{ {y}^{2} + 36 + 12y +  {y}^{2}  = 468 }\\  \\ \rightarrow \:  \tt{2 {y}^{2} + 12y + 36 - 468 = 0 }\\  \\ \rightarrow \:  \tt{ 2{y}^{2}  + 12y - 432 = 0}\\  \\ \rightarrow \:  \tt{ {y}^{2}  + 6y - 216 = 0}\\  \\ \rightarrow \:  \tt{ {y}^{2} + (18 - 12)y - 216 = 0 }\\  \\ \rightarrow \:  \tt{ {y}^{2}  + 18y - 12y - 216 = 0}\\  \\ \rightarrow \:  \tt{ y(y + 18) - 12(y + 18) = 0}\\  \\ \rightarrow \:  \tt{(y + 18)(y - 12) = 0}\\  \\ \rightarrow \:  \tt{y + 18 = 0 \:  \: or  \: \: y - 12 = 0}\\  \\ \rightarrow \:  \tt{y =  - 18 \:  \: or \:  \: y = 12}

Side of any square can not be negative, so the side is 12 m...

Putting ( y = 12 ) in equation (2)

\rightarrow \:  \tt{x = 6 + y}\\  \\ \rightarrow \:  \tt{x = 12 + 6}\\  \\ \rightarrow \:  \tt{x = 18}

Side of the second square is 18 m...

\blue{\boxed{\text{\small{\red{So, the sides of both the squares are 12 m and 18 m respectively}}}}}

Similar questions