tan⁻¹ 15 +tan⁻¹ 17 +tan⁻¹ 13 + tan⁻¹ 18 = π4 सिद्ध कीजिए
Answers
Step-by-step explanation:
LHS = tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/3) + tan^-1(1/8)
we know, tan^-1x + tan^-1y = tan^-1(x + y)/(1 - xy)
where , xy < 1
= [tan^-1(1/5) + tan^-1(1/7) ] + [tan^-1(1/3) + tan^-1(1/8) ]
= tan^-1{(1/5 + 1/7)/(1 - 1/5 × 1/7)} + tan^-1{(1/3 + 1/8)/(1 - 1/3 × 1/8)}
= tan^-1{(12/35}/(34/35)} + tan^-1{(11/24)/(23/24}
= tan^-1{6/17} + tan^-1{11/23}
= tan^-1{(6 × 23 + 17 × 11)/17 × 23}/{1 - 6/17 × 11/23}
= tan^-1{(138 + 187)/(391 - 66)}
= tan^-1{325/325}
= tan^-1(1) = π/4 = RHS
✌✌✌✌
❤❤❤❤
⭕⭕⭕⭕⭕⭕⭕⭕⭕⭕⭕⭕⭕⭕
Given : tan⁻¹ 1/5 +tan⁻¹ 1/7 +tan⁻¹ 1/3 + tan⁻¹ 1/8 = π4
To find : सिद्ध कीजिए
Solution:
tan⁻¹ 1/5 +tan⁻¹ 1/7 +tan⁻¹ 1/3 + tan⁻¹ 1/8 = π4
दोनों तरफ Tan लेने पर
=> tan ( tan⁻¹ 1/5 +tan⁻¹ 1/7 +tan⁻¹ 1/3 + tan⁻¹ 1/8) = Tan π4
LHS = tan ( (tan⁻¹ 1/5 +tan⁻¹ 1/7) +(tan⁻¹ 1/3 + tan⁻¹ 1/8))
माना A = tan⁻¹ 1/5 +tan⁻¹ 1/7 B = tan⁻¹ 1/3 + tan⁻¹ 1/8
tan(A + B) = (tanA + tanB) / (1 - tanAtanB)
A = tan⁻¹ 1/5 +tan⁻¹ 1/7
Tan A = Tan(tan⁻¹ 1/5 +tan⁻¹ 1/7 )
= (1/5 + 1/7 )/( 1- (1/5)(1/7))
= (7 + 5)/(35 - 1)
= 12/34
= 6/17
=> A = tan⁻¹ 6/17
B +
tanB = tan(tan⁻¹ 1/3 + tan⁻¹ 1/8)
= ( 1/3 + 1/8)/(1 - (1/3)(1/8))
= (8 + 3)/ (24 - 1)
= 11/23
=> B = tan⁻¹ 11/23
LHS = (6/17 + 11/23)/(1 - (6/17)(11/23)
= (138 + 187)/(391 - 66)
= 325/325
= 1
RHS = Tan π4
= 1
LHS = RHS
=> tan⁻¹ 1/5 +tan⁻¹ 1/7 +tan⁻¹ 1/3 + tan⁻¹ 1/8 = π4
QED
इति सिद्धम
और सीखें
tan⁻¹(2/11) + tan⁻¹ (7/24) = tan⁻¹ ½
brainly.in/question/16554897
3cos⁻¹ x = cos⁻¹ (4x³ - 3x), x∈[1/2, 1 ] को सिद्ध कीजिये
brainly.in/question/16554602
"cos⁻¹(-1/2 ) का मुख्य मान ज्ञात कीजिये"
brainly.in/question/16549994
cos⁻¹ (½) + 2sin⁻¹(½) का मान ज्ञात कीजिये
brainly.in/question/16554597
2sin⁻¹35 = tan⁻¹ 247 सिद्ध कीजिए
https://brainly.in/question/16556013