Math, asked by Kanwarbrar, 5 hours ago

Tan a + cot a = Sec a cosec a

Answers

Answered by jeevankishorbabu9985
3

Answer:

 \red{   \small{\tan(a) + \cot(a) =  \sec(a)  \times  \csc(a)}}

  • True

Step-by-step explanation:

Verify the following identity:

  • tan(a) + cot(a) = sec(a) csc(a)

Write

  • cotangent as cosine/sine,
  • cosecant as 1/sine,
  • secant as 1/cosine
  • tangent as sine/cosine:

 \tiny{ \tt{ \pink{cos(a)/sin(a) + sin(a)/cos(a) = 1/cos(a) 1/sin(a)}}}

Put cos(a)/sin(a) + sin(a)/cos(a) over the common denominator

  \large{\mapsto} \small{ \color{navy} \sin(a)  \cos(a):  \frac{ \cos(a)}{ \sin(a) } +  \frac {\sin(a)}{ \cos(a) }=  \frac{(cos(a)^2 + sin(a)^2)}{(cos(a) sin(a))}:}

 \bigstar \tiny{ \color{magenta} \frac{((cos(a)^2 + sin(a)^2)}{(cos(a) sin(a))) }=  \frac{1}{(cos(a) sin(a))}}

  • Multiply both sides by

 \bf{ \huge{ \orange \dashrightarrow \sin(a)  \cos(a):</p><p> \cos(a)^2 +   \sin(a)^2 = 1}}

  • Substitute
  •   \color{lime} \bold{ \large{\longmapsto  \cos(a)^2 + \sin(a)^2 = 1:</li><li>1 = 1}}

  • The left hand side and right hand side are identical:

 \color{lime}{ \longmapsto \therefore \bold @{The  \: Identity  \: Is  \: Verified™  \: °•° }}

Similar questions