Math, asked by shreyamore045, 1 year ago

(cosθ+i sinθ)^{n}=cos(nθ)+i sin(nθ),i=\sqrt-1}

Answers

Answered by shadowsabers03
0

Question:-

Prove by Principle of Mathematical Induction that \displaystyle\sf {(\cos\theta+i\sin\theta)^n=\cos (n\theta)+i\sin (n\theta)\ \forall n\in\mathbb{N}} where \displaystyle\sf {i=\sqrt{-1}.}

Solution:-

Let,

\displaystyle\longrightarrow\sf {P(n):(\cos\theta+i\sin\theta)^n=\cos (n\theta)+i\sin (n\theta)\ \forall n\in\mathbb{N}}

Consider P(1).

\displaystyle\longrightarrow\sf {LHS}

\displaystyle\longrightarrow\sf {=(\cos\theta+i\sin\theta)^1}

\displaystyle\longrightarrow\sf {\cos\theta+i\sin\theta}

\displaystyle\longrightarrow\sf {\cos(1\cdot\theta)+i\sin(1\cdot\theta)}

\displaystyle\longrightarrow\sf {RHS}

So P(1) is true. Hence assume P(k) is true.

\displaystyle\longrightarrow\sf {P(k):(\cos\theta+i\sin\theta)^k=\cos (k\theta)+i\sin (k\theta)\ \forall k\in\mathbb{N}}

Consider P(k + 1).

\displaystyle\longrightarrow\sf {P(k+1):(\cos\theta+i\sin\theta)^{k+1}=\cos ((k+1)\theta)+i\sin ((k+1)\theta)\ \forall k\in\mathbb{N}}

Let's check whether it's true.

\displaystyle\longrightarrow\sf {LHS}

\displaystyle\longrightarrow\sf {(\cos\theta+i\sin\theta)^{k+1}}

\displaystyle\longrightarrow\sf {(\cos\theta+i\sin\theta)(\cos\theta+i\sin\theta)^{k}}

\displaystyle\longrightarrow\sf {(\cos\theta+i\sin\theta)(\cos(k\theta)+i\sin(k\theta))}

\displaystyle\longrightarrow\sf {\cos\theta\cos(k\theta)+i\sin(k\theta)\cos\theta+i\sin\theta\cos(k\theta)-\sin\theta\sin(k\theta)}

\displaystyle\longrightarrow\sf {[\cos\theta\cos(k\theta)-\sin\theta\sin(k\theta)]+i[\sin(k\theta)\cos\theta+\cos(k\theta)\sin\theta]}

\displaystyle\longrightarrow\sf {\cos (\theta+k\theta)+i\sin(k\theta+\theta)}

\displaystyle\longrightarrow\sf {\cos ((k+1)\theta)+i\sin((k+1)\theta)}

\displaystyle\longrightarrow\sf {RHS}

Therefore P(k + 1) is true whenever P(k) is true.

Hence P(n) is true \displaystyle\sf {\forall n\in\mathbb {N}.}

Similar questions