Math, asked by Anonymous, 10 months ago


 \frac{ \sin \: \theta  - 2 \:  { \sin \:  }^{3}  \theta }{2 \:  { \cos }^{3}  \theta \:  -  \:  \cos \theta }  =  \tan \theta
prove \:  \\ dont \: spam

Answers

Answered by Anonymous
70

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

 \star{\sf{  \:  \:  \frac{sin \theta - 2 {sin}^{3} \theta }{2 {cos}^{2}  \theta - cos \theta} = tan \theta }} \\ \\

{\bf{\blue{\underline{Take\:L.H.S:}}}}

 {\sf{ L.H.S= \:  \:  \frac{sin \theta - 2 {sin}^{3} \theta }{2 {cos}^{2}  \theta - cos \theta} }} \\ \\

 {\sf{ Take \sin \theta \: and \: cos \theta \: common}} \\ \\

 ={\sf{  \frac{sin \theta(1 - 2 {sin}^{2}  \theta)}{cos \theta(2 {cos}^{2} \theta - 1) } }} \\ \\

 \boxed{\bf{\orange{\underline{ {sin}^{2}  \theta = 1 -  {cos}^{2} \theta }}}}\\ \\

 ={\sf{  \frac{sin \theta  \big[1 - 2(1 -  {cos}^{2}  \theta)\big] \: }{cos \theta(2 {cos}^{2} \theta - 1) } }} \\ \\

 ={\sf{  \frac{sin \theta  \big[1 - 2 + 2{cos}^{2}  \theta\big] \: }{cos \theta(2 {cos}^{2} \theta - 1) } }} \\ \\

 ={\sf{  \frac{sin \theta  [ - 1  +   2{cos}^{2}  \theta] \: }{cos \theta(2 {cos}^{2} \theta - 1) } }} \\ \\

 ={\sf{  \frac{sin \theta  (   2{cos}^{2}   \theta - 1) \: }{cos \theta(2 {cos}^{2} \theta - 1) } }} \\ \\

 ={\sf{  \frac{sin \theta   \cancel{(   2{cos}^{2}   \theta - 1) }\: }{cos \theta \cancel{(2 {cos}^{2} \theta - 1)} } }} \\ \\

 ={\sf{  \frac{sin \theta    \: }{cos \theta} }} \\ \\

 ={\sf{  tan \theta }} \\ \\

Hence L.H.S = R.HS


RvChaudharY50: Perfect.
mysticd: ..
mysticd: very good
Anonymous: Oh Sister Thank you for your Amazing answer ...
BrainlyRaaz: Awesome ❤️
BraɪnlyRoмan: Nice ♡
Answered by Nereida
67

Answer :

Solving LHS,

\leadsto\sf{\dfrac{sin\theta - 2sin^{3}\theta}{2cos^{3}\theta - cos\theta}}

Taking common,

\leadsto\sf{=\dfrac{sin\theta(1 - 2sin^{2}\theta)}{cos\theta(2cos^{2}\theta - 1)}}

\leadsto\sf{=\dfrac{sin\theta}{cos\theta}\times\dfrac{1 - 2sin^{2}\theta}{2cos^{2}\theta - 1}}

We know that, sin∅/cos∅ = tan∅.

Hence,

\leadsto\sf{=tan\theta\times\dfrac{1 - 2sin^{2}\theta}{2cos^{2}\theta - 1}}

We know that, sin²∅+cos²∅=1.

Hence, using it :

\leadsto\sf{=tan\theta\times\dfrac{1 - 2(1 - cos^{2}\theta)}{2cos^{2}\theta - 1}}

\leadsto\sf{=tan\theta\times\dfrac{1 - 2 + 2cos^{2}\theta}{2cos^{2}\theta - 1}}

\leadsto\sf{=tan\theta\times\dfrac{- 1 + 2cos^{2}\theta}{2cos^{2}\theta - 1}}

\leadsto\sf{=tan\theta\times\dfrac{- 1 + 2cos^{2}\theta}{- 1 + 2cos^{2}\theta}}

\leadsto\underline{\bf{=tan\theta}}

Hence, Proved.


mysticd: Use = symbol instead of implies
RvChaudharY50: Awesome. ❤️
Anonymous: Thank you Best user ... for Helping me...
BraɪnlyRoмan: Nice♡
Similar questions