Math, asked by virinchijackson, 9 months ago


 log_{3} \sqrt{3 +  \sqrt{3 +  \sqrt{3..... \infty  = } } } ?
intelligents stundents   plzz anwer

Answers

Answered by Anonymous
1

Given \:  \: Question \:  \: Is \:  \\  \\  log_{3}( \sqrt{3 +  \sqrt{3 +  \sqrt{3 +  \sqrt{3 + ... \infty } } } } )  \\  \\ let \:  \:  \:  \sqrt{3 +  \sqrt{3 +  \sqrt{3 +  \sqrt{3 + ... \infty } } } }  = z \\  \\ remove \:  \:  \: one \:  \:  \:  \sqrt{3}  \\  \\  \sqrt{3 +  \sqrt{3 +  \sqrt{3 + ... \infty } } }  = z \\  \\ squaring \:  \: on \:  \: both \:  \: sides \\  \\ 3 +  \sqrt{3 +  \sqrt{3 + ... \infty } }  = z {}^{2}  \\  \\ 3 + z = z {}^{2}  \\  \\ z {}^{2}  - z - 3 = 0 \\  \\ z  =  \frac{ - 1 +  \sqrt{13} }{1}  \:  \:  \: or \:  \:  \: z =  \frac{ - 1 -  \sqrt{13} }{1}  \\  \\ therefore \:  \:  \\  log_{3}( \sqrt{13}  - 1)

Similar questions