Math, asked by Aman69032, 11 months ago

 <h2 > Question

Name the type of quadrilateral formed, if any, by the following points and give reason for your answer:
1. (–1,–2), (1,0) , (–1,2),
(–3,0)​

Answers

Answered by Anonymous
81

 \huge \sf{\underline{\underline {\boxed{\red{Correct \: Question.}}}}}

 \rm \: Name \: the \: type \: of \: quadrilateral \:formed, \: if \: any ,\: by \: the \\  \rm following \: points, \: and \: given \: reasons \: for \: your  \\ \rm answer.

 \rm i) \: ( - 1, - 2)(1,0)( - 1,2)( - 3,0)

 \huge{\red{\boxed{\overline{\underline{ \mid \tt{ \red {Solution \red {\mid}}}}}}}}

 \rm( - 1, - 2)(1,0) (- 1,2)( - 3,0)

 \rm \: Let \: A → \: (  - 1, - 2), \: B→ \: (1,0), \: C→ \: ( - 1,2) \: and \: D→ \: ( - 3,0)

 \rm \: Then,

 \rm \:  \:  \:  \:  \:  \red{ side \: AB }= \sqrt{ [1 - ( - 1)]  {}^{2}  + ( 0- ( - 2) ] {}^{2} }

\implies \:   \:  \rm \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sqrt{(x_2  - x_1) {}^{2}  + (y_2 - y_1) {}^{2} }

 \rm =   \:  \:  \:  \: \sqrt{(2) {}^{2}  + (2) {}^{2} }  =  \sqrt{4 + 4 \: }

 \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \rm =  \sqrt{8 \: }  = \:   \sqrt{4 \times 2 \: }  =  \: 2 \sqrt{2 \: }

 \:  \:  \:  \rm \:  \:  \:  \red{ side \: BC }=  \sqrt{( - 1 - 1) {}^{2}  + (2 - 0) {}^{2} }

 \:  \:  \:  \:  \:  \:  \rm =   \:  \: \sqrt{( - 2) {}^{2}  + (2) {}^{2} }  =  \sqrt{4 + 4 \: }

 \:  \:  \:  \:  \:  \:  \rm =  \:  \:  \sqrt{8}  =  \sqrt{4 \times 2}  =  \sqrt{4}  \sqrt{2}  = 2 \sqrt{2}  \\

 \rm   \:  \:  \:  \:  \:  \:  \:  \: \red{side \: CD} =  \sqrt{[ - 3( - 1)] {}^{2}  +( 0 - 2) {}^{2}}

 \:  \:  \:  \:  \:  \:  =   \: \rm \:  \sqrt{( - 2)  {}^{2} + ( - 2) {}^{2} }  =  \sqrt{4 + 4 \: }

 \:  \:  \:  \:  \rm =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sqrt{8}  = 2 \sqrt{2 \: }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \red{side \: DA} \:  =  \sqrt{[ - 1 - ( - 3)] {}^{2}  + ( - 2 - 0) {}^{2}}

 \:  \:  \:  \:  \:  \rm =  \:  \:  \:  \sqrt{(2) {}^{2}   + ( - 2) {}^{2} } =  \sqrt{4 + 4 \: }

 \:  \:  \:  \:  \:  \:  \:  \:  \rm =  \sqrt{8 \: }  =  \:  \: 2 \sqrt{2 \: }

 \rm \: We \: see \: that \:  \red{AB = BC = CD = DA}

 \rm \: i.e., \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: all \: the \: four \: sides \: are \: equal \:

 \therefore \:  \:  \:  \:  \:  \:  \rm The \: figure \: is \: either \: a \: square \: or \: a \: rhombus.

 \rm \: Diagonal \:  \:  \:  \:  \: AC =  \:  \sqrt{[ - 1 - ( - 1)  ] {}^{2}  +  [2 - ( - 2)] {}^{2} }

 \:  \:  \:  \:  \:  \:  \rm = \:  \:  \:  \:   \sqrt{0 + 16 \: }  = 4

 \rm \: Diagonal \:  \:  \:  \: BD =  \:  \sqrt{( - 3 - 1) {}^{2}  + (0 - 0) {}^{2} }

 \:  \:  \:  \:  \:  \rm \:  = \:  \:   \sqrt{16 + 0 \: }  =  \: 4

  \rm \: Again \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \bf\red{AC = BD}

 \bf \purple{(i.e., \: diagonals \: of \: the \: quadrilateral \: ABCD \: are \: equal.)}

 \rm \: Therefore, \:  \sf \red{ABCD} \rm \: is \: a \:  \sf \red{square}.

Answered by Anonymous
7

\huge\underline\bold\orange{Given}

\bold{Measures \: of \: triangle \: (-1,-2),\: (1,0),}

\bold{(-1,3), \: (-3,0)}

\huge\underline\bold\orange{Find\:out}

\textbf{Name the type of quadrilateral and }\textbf{give reason for your answer}

\huge\underline\bold\orange{Formula \: used}

\textbf{Distance \: formula}

\sqrt{(x2-x1)^2+(y2-y1)^2}

\huge\underline\bold\orange{Solution}

\large\bold\blue{Distance \: of \: AB}

\bold{AB \: =}\sqrt{(x2-x1)^2+(y2-y1)^2}

\bold{AB \: =}\sqrt{(1-(-1))^2+(0-(-2))^2}

\bold{AB \: =}\sqrt{(1+1)^2+(0+2)^2}

\bold{AB \: =}\sqrt{(2)^2+(2)^2}

\bold{AB \: =}\sqrt{4+4}

\bold{AB \: =}\sqrt{8}

\bold{AB \: =}{2}\sqrt{2}unit

\large\bold\blue{Distance \: of \: BC}

\bold{BC \: =}\sqrt{(-1-1)^2+(2-0)^2}

\bold{BC \: =}\sqrt{(-2)^2+(2)^2}

\bold{BC \: =}\sqrt{4+4}

\bold{BC \: =}\sqrt{8}

\bold{BC \: =}{2}\sqrt{2}unit

\large\bold\blue{Distance \: of \: CD}

\bold{CD \: =}\sqrt{(-3-(-1))^2+(0-2)^2}

\bold{CD \: =}\sqrt{(-3+1)^2+(-2)^2}

\bold{CD \: =}\sqrt{(-2)^2+4}

\bold{CD \: =}\sqrt{4+4}

\bold{CD \: =}\sqrt{8}

\bold{CD \: =}{2}\sqrt{2}unit

\large\bold\blue{Distance \: of \: DA}

\bold{DA \: =}\sqrt{(-1-(-3))^2+(-2-0)^2}

\bold{DA \: =}\sqrt{(-1+3)^2+(-2)^2}

\bold{DA \: =}\sqrt{(-2)^2+(-2)^2}

\bold{DA \: =}\sqrt{4+4}

\bold{DA \: =}\sqrt{8}

\bold{DA \: =}{2}\sqrt{2}unit

\large\bold\blue{Distance \: of \: AC}

\bold{AC \: =}\sqrt{(-1-(-1))^2+(-2-2)^2}

\bold{AC \: =}\sqrt{(0)^2+(-4)^2}

\bold{AC \: =}\sqrt{16}

\bold{AC \: =}{4}unit

\large\bold\blue{Distance \: of \: BD}

\bold{BD \: =}\sqrt{(-3-1)^2+(0-0)^2}

\bold{BD \: =}\sqrt{(-4)^2+(0)^2}

\bold{BD \: =}\sqrt{16}

\bold{BD \: = \: 4}unit

\textbf\red{Hence, AB=BC=CD=DA}

\textbf\red{AC=BD}

.•.\textbf\red{ABCD \: is \: a \: square}

\textbf\red{All \: sides \: are \: equal \: in \: square}

\textbf\red{Diagonals \: are \: equal \: in \: square}

Attachments:
Similar questions