Math, asked by kavyasingh9565, 5 months ago

the circumference of a base of a cylinder is 88 cm and its height is 14cm find the total surface area of the cylinder​

Answers

Answered by sabitasamak43
7

Answer:

2,464 cm²

Explanation:

We have, Circumference of base of cylinder = 88 cm

Height of cylinder = 14 cm

By using the formula,

Circumference of base of cylinder = 2πr

So,

2πr = 88

2 × 22/7 × r = 88

r = 88×7 / 44

= 616/44

= 14cm

Radius of cylinder = 14 cm

∴ Total surface area area of cylinder = 2πr (h+r) = 2 × 22/7 × 14 (14 + 14)

= 2 × 22/7 × 14 × 28

= 2,464 cm²

Answered by SparklingThunder
62

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

The circumference of a base of a cylinder is 88 cm and its height is 14 cm . Find the total surface area of the cylinder .

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

Total Surface Area of Cylinder = 2464  \sf {cm}^{2}

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

Circumference of the circular base of a cylinder = 88 cm

Height of cylinder = 14 cm

\green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

Total Surface Area of Cylinder .

\green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \purple{ \boxed{ \begin{array}{l} \textsf{Circumference of circle = $2\pi \sf r$} \\  \\\textsf{TSA of cylinder =$2\pi \sf r(h + r)$ }  \end{array}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

 \textsf{Circumference of circular base of cylinder} =  \sf2\pi r \\  \\  \displaystyle \sf \longrightarrow88 = 2 \times  \frac{22}{7}  \times  r \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \displaystyle \sf \longrightarrow88 = \frac{44}{7}  \times r \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow r =  \frac{ \cancel{88} { \: }^{2}  \times 7}{ \cancel{44}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow r = 14 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple{ \boxed{ \textsf{Radius of cylinder = 14 cm}}}

 \red{ \underline{\underline{ \textsf{TSA of cylinder : }}}}

\displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf = 2 \times  \frac{22}{ \cancel7}   \times  \cancel{14} { \: }^{2} (14+ 14)  \:  \:  \: \:  \:   \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf =2 \times 22 \times 2 \times 28 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf =2464 \:   {cm}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:

\purple{ \boxed{ \begin{array}{l}  \textsf{TSA of cylinder = $\sf2464 \:  {cm}^{2}  $} \end{array}}}

Similar questions